Browsing by Subject "TRIMETHYLAMINE"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Kupiainen-Määttä, Oona (2016)
    Evaporation rates of small negatively charged sulfuric acid-ammonia clusters are determined by combining detailed cluster formation simulations with cluster distributions measured in the CLOUD experiment at CERN. The analysis is performed by varying the evaporation rates with Markov chain Monte Carlo (MCMC), running cluster formation simulations with each new set of evaporation rates and comparing the obtained cluster distributions to the measurements. In a second set of simulations, the fragmentation of clusters in the mass spectrometer due to energetic collisions is studied by treating also the fragmentation probabilities as unknown parameters and varying them with MCMC. This second set of simulations results in a better fit to the experimental data, suggesting that a large fraction of the observed HSO4- and HSO4-center dot H2SO4 signals may result from fragmentation of larger clusters, most importantly the HSO4-center dot(H2SO4)(2) trimer.
  • Simon, Mario; Heinritzi, Martin; Herzog, Stephan; Leiminger, Markus; Bianchi, Federico; Praplan, Arnaud; Dommen, Josef; Curtius, Joachim; Kuerten, Andreas (2016)
    Amines are potentially important for atmospheric new particle formation, but their concentrations are usually low with typical mixing ratios in the pptv range or even smaller. Therefore, the demand for highly sensitive gas-phase amine measurements has emerged in the last several years. Nitrate chemical ionization mass spectrometry (CIMS) is routinely used for the measurement of gas-phase sulfuric acid in the sub-pptv range. Furthermore, extremely low volatile organic compounds (ELVOCs) can be detected with a nitrate CIMS. In this study we demonstrate that a nitrate CIMS can also be used for the sensitive measurement of dimethylamine (DMA, (CH3)(2)NH) using the NO3-center dot(HNO3)(1-2)center dot(DMA) cluster ion signal. Calibration measurements were made at the CLOUD chamber during two different measurement campaigns. Good linearity between 0 and similar to 120 pptv of DMA as well as a sub-pptv detection limit of 0.7 pptv for a 10 min integration time are demonstrated at 278 K and 38% RH.