Browsing by Subject "TRKB"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Diniz, Cassiano Ricardo Alves Faria; Casarotto, Plinio C.; Fred, Senem M.; Biojone, Caroline; Castrén, Eero; Joca, Sâmia R.L. (2018)
    The renin-angiotensin system (RAS) is associated with peripheral fluid homeostasis and cardiovascular function, but recent evidence also suggests a functional role in the brain. RAS regulates physiological and behavioral parameters related to the stress response, including depressive symptoms. Apparently, RAS can modulate levels of brain-derived neurotrophic factor (BDNF) and TRKB, which are important in the neurobiology of depression and antidepressant action. However, the interaction between the BDNF/TRKB system and RAS in depression has not been investigated before. Accordingly, in the forced swimming test, we observed an antidepressant-like effect of systemic losartan but not with captopril or enalapril treatment. Moreover, infusion of losartan into the ventral hippocampus (vHC) and prelimbic prefrontal cortex (PL) mimicked the consequences of systemically injected losartan, whereas K252a (a blocker of TRK) infused into these brain areas impaired such effect. PD123319, an antagonist of AT2 receptor (AGTR2), also prevented the systemic losartan effect when infused into PL but not into vHC. Cultured cortical cells of rat embryos revealed that angiotensin II (ANG2), possibly through AGTR2, increased the surface levels of TRKB and its coupling to FYN, a SRC family kinase. Higher Agtr2 levels in cortical cells were reduced after stimulation with glutamate, and only under this condition an interaction between losartan and ANG2 was achieved. TRKB/AGTR2 heterodimers were also observed, in MG87 cells GFP-tagged AGTR2 co-immunoprecipitated with TRKB. Therefore, the antidepressant-like effect of losartan is proposed to occur through a shift of ANG2 towards AGTR2, followed by coupling of TRK/FYN and putative TRIG transactivation. Thus, the blockade of AGTR1 has therapeutic potential as a novel antidepressant therapy. (C) 2018 The Author(s). Published by Elsevier Ltd.
  • Cannarozzo, Cecilia; Fred, Senem Merve; Girych, Mykhailo; Biojone, Caroline; Enkavi, Giray; Rog, Tomasz; Vattulainen, Ilpo Tapio; Casarotto, Plinio C.; Castren, Eero (2021)
    Cholesterol is an essential constituent of cell membranes. The discovery of cholesterol-recognition amino acid consensus (CRAC) motif in proteins indicated a putative direct, non-covalent interaction between cholesterol and proteins. In the present study, we evaluated the presence of a CRAC motif and its inverted version (CARC) in the transmembrane region (TMR) of the tyrosine kinase receptor family (RTK) in several species using in silico methods. CRAC motifs were found across all species analyzed, while CARC was found only in vertebrates. The tropomyosin-related kinase B (TRKB), a member of the RTK family, through interaction with its endogenous ligand brain-derived neurotrophic factor (BDNF) is a core participant in the neuronal plasticity process and exhibits a CARC motif in its TMR. Upon identifying the conserved CARC motif in the TRKB, we performed molecular dynamics simulations of the mouse TRKB.TMR. The simulations indicated that cholesterol interaction with the TRKB CARC motif occurs mainly at the central Y433 residue. Our binding assay suggested a bell-shaped effect of cholesterol on BDNF interaction with TRKB receptors, and our results suggest that CARC/CRAC motifs may play a role in the function of the RTK family TMR.
  • Moliner, Rafael (Helsingin yliopisto, 2019)
    Classical and rapid-acting antidepressant drugs have been shown to reinstate juvenile-like plasticity in the adult brain, allowing mature neuronal networks to rewire in an environmentally-driven/activity-dependent process. Indeed, antidepressant drugs gradually increase expression of brain-derived neurotrophic factor (BDNF) and can rapidly activate signaling of its high-affinity receptor TRKB. However, the exact mechanism of action underlying drug-induced restoration of juvenile-like plasticity remains poorly understood. In this study we first characterized acute effects of classical and rapid-acting antidepressant drugs on the interaction between TRKB and postsynaptic density (PSD) proteins PSD-93 and PSD-95 in vitro. PSD proteins constitute the core of synaptic complexes by anchoring receptors, ion channels, adhesion proteins and various signaling molecules, and are also involved in protein transport and cell surface localization. PSD proteins have in common their role as key regulators of synaptic structure and function, although PSD-93 and PSD-95 are associated with different functions during development and have opposing effects on the state of plasticity in individual synapses and neurons. Secondly, we investigated changes in mobility of TRKB in dendritic structures in response to treatment with antidepressant drugs in vitro. We found that antidepressant drugs decrease anchoring of TRKB with PSD-93 and PSD-95, and can rapidly increase TRKB turnover in dendritic spines. Our results contribute to the mechanistic model explaining drug-induced restoration of juvenile-like neuronal plasticity, and may provide a common basis for the effects of antidepressant drugs.
  • Sahu, Madhusmita Priyadarshini; Pazos-Boubeta, Yago; Pajanoja, Ceren; Rozov, Stanislav; Panula, Pertti; Castren, Eero (2019)
    Neurotrophins and their receptors have highly conserved evolutionary lineage in vertebrates including zebrafish. The NTRK2 receptor has two isoforms in zebrafish, Ntrk2a and Ntrk2b. The spatio-temporal expression pattern of bdnf and ntrk2b in the zebrafish brain was studied using in situ hybridization. The robust and corresponding expression pattern of ntrk2b to bdnf suggests that ntrk2b is the key receptor for bdnf in the zebrafish brain, unlike its duplicate isoform ntrk2a. To study ntrk2b function, two different genetic strategies, the TILLING mutant and morpholino oligonucleotides (MO), were used. Specific subsets of the dopaminergic and serotonergic neuronal populations were affected in the mutants and morphants. The mutant showed anxiety-like behavior both in larval and adult stages. Our results consistently indicate that BDNF/NTRK2 signaling has a significant role in the development and maintenance of aminergic neuronal populations. Therefore, the ntrk2b-deficient zebrafish is well suited to study mechanisms relevant for psychiatric disorders attributed to a dysfunctional monoaminergic system.
  • Lesnikova, Angelina; Casarotto, Plinio; Moliner, Rafael; Fred, Senem Merve; Biojone, Caroline; Castren, Eero (2021)
    Perineuronal nets (PNNs) have an important physiological role in the retention of learning by restricting cognitive flexibility. Their deposition peaks after developmental periods of intensive learning, usually in late childhood, and they help in long-term preservation of newly acquired skills and information. Modulation of PNN function by various techniques enhances plasticity and regulates the retention of memories, which may be beneficial when memory persistence entails negative symptoms such as post-traumatic stress disorder (PTSD). In this study, we investigated the role of PTP sigma [receptor-type tyrosine-protein phosphatase S, a phosphatase that is activated by binding of chondroitin sulfate proteoglycans (CSPGs) from PNNs] in retention of memories using Novel Object Recognition and Fear Conditioning models. We observed that mice haploinsufficient for PTPRS gene (PTP sigma(+/-)), although having improved short-term object recognition memory, display impaired long-term memory in both Novel Object Recognition and Fear Conditioning paradigm, as compared to WT littermates. However, PTP sigma(+/-) mice did not show any differences in behavioral tests that do not heavily rely on cognitive flexibility, such as Elevated Plus Maze, Open Field, Marble Burying, and Forced Swimming Test. Since PTP sigma has been shown to interact with and dephosphorylate TRKB, we investigated activation of this receptor and its downstream pathways in limbic areas known to be associated with memory. We found that phosphorylation of TRKB and PLC gamma are increased in the hippocampus, prefrontal cortex, and amygdaloid complex of PTP sigma(+/-) mice, but other TRKB-mediated signaling pathways are not affected. Our data suggest that PTP sigma downregulation promotes TRKB phosphorylation in different brain areas, improves short-term memory performance but disrupts long-term memory retention in the tested animal models. Inhibition of PTP sigma or disruption of PNN-PTP sigma-TRKB complex might be a potential target for disorders where negative modulation of the acquired memories can be beneficial.