Browsing by Subject "TROPOSPHERIC DEGRADATION"

Sort by: Order: Results:

Now showing items 1-14 of 14
  • Rannik, Ullar; Zhou, Luxi; Zhou, Putian; Gierens, Rosa; Mammarella, Ivan; Sogachev, Andrey; Boy, Michael (2016)
    A 1-D atmospheric boundary layer (ABL) model coupled with a detailed atmospheric chemistry and aerosol dynamical model, the model SOSAA, was used to predict the ABL and detailed aerosol population (characterized by the number size distribution) time evolution. The model was applied over a period of 10 days in May 2013 to a pine forest site in southern Finland. The period was characterized by frequent new particle formation events and simultaneous intensive aerosol transformation. The aim of the study was to analyze and quantify the role of aerosol and ABL dynamics in the vertical transport of aerosols. It was of particular interest to what extent the fluxes above the canopy deviate from the particle dry deposition on the canopy foliage due to the above-mentioned processes. The model simulations revealed that the particle concentration change due to aerosol dynamics frequently exceeded the effect of particle deposition by even an order of magnitude or more. The impact was, however, strongly dependent on particle size and time. In spite of the fact that the timescale of turbulent transfer inside the canopy is much smaller than the timescales of aerosol dynamics and dry deposition, leading us to assume well-mixed properties of air, the fluxes at the canopy top frequently deviated from deposition inside the forest. This was due to transformation of aerosol concentration throughout the ABL and resulting complicated pattern of vertical transport. Therefore we argue that the comparison of timescales of aerosol dynamics and deposition defined for the processes below the flux measurement level do not unambiguously describe the importance of aerosol dynamics for vertical transport above the canopy. We conclude that under dynamical conditions reported in the current study the micrometeorological particle flux measurements can significantly deviate from the dry deposition into the canopy. The deviation can be systematic for certain size ranges so that the time-averaged particle fluxes can be also biased with respect to deposition sink.
  • Xavier, Carlton; Rusanen, Anton; Zhou, Putian; Chen, Dean; Pichelstorfer, Lukas; Pontus, Roldin; Boy, Michael (2019)
    In this study we modeled secondary organic aerosol (SOA) mass loadings from the oxidation (by O-3, OH and NO3) of five representative biogenic volatile organic compounds (BVOCs): isoprene, endocyclic bond-containing monoterpenes (alpha-pinene and limonene), exocyclic double-bond compound (beta-pinene) and a sesquiterpene (beta-caryophyllene). The simulations were designed to replicate an idealized smog chamber and oxidative flow reactors (OFRs). The Master Chemical Mechanism (MCM) together with the peroxy radical autoxidation mechanism (PRAM) were used to simulate the gas-phase chemistry. The aim of this study was to compare the potency of MCM and MCM + PRAM in predicting SOA formation. SOA yields were in good agreement with experimental values for chamber simulations when MCM + PRAM was applied, while a stand-alone MCM underpredicted the SOA yields. Compared to experimental yields, the OFR simulations using MCM + PRAM yields were in good agreement for BVOCs oxidized by both O-3 and OH. On the other hand, a stand-alone MCM underpredicted the SOA mass yields. SOA yields increased with decreasing temperatures and NO concentrations and vice versa. This highlights the limitations posed when using fixed SOA yields in a majority of global and regional models. Few compounds that play a crucial role (> 95% of mass load) in contributing to SOA mass increase (using MCM + PRAM) are identified. The results further emphasized that incorporating PRAM in conjunction with MCM does improve SOA mass yield estimation.
  • Kurten, Theo; Moller, Kristian H.; Nguyen, Tran B.; Schwantes, Rebecca H.; Misztal, Pawel K.; Su, Luping; Wennberg, Paul O.; Fry, Juliane L.; Kjaergaard, Henrik G. (2017)
    Oxidation of monoterpenes (C10H16) by nitrate radicals (NO3) constitutes an important source of atmospheric secondary organic aerosol (SOA) and organonitrates. However, knowledge of the mechanisms of their formation is incomplete and differences in yields between similar monoterpenes are poorly understood. In particular, yields of SOA and organonitrates from alpha-pinene + NO3 are low, while those from Delta(3)-carene + NO3 are high. Using computational methods, we suggest that bond scission of the nitrooxy alkoxy radicals from Delta(3)-carene lead to the formation of reactive keto-nitrooxy-alkyl radicals, which retain the nitrooxy moiety and can undergo further reactions to form SOA. By contrast, bond scissions of the nitrooxy alkoxy radicals from alpha-pinene lead almost exclusively to the formation of the relatively unreactive and volatile product pinonaldehyde (C10H16O2), thereby limiting organonitrate and SOA formation. This hypothesis is supported by laboratory experiments that quantify products of the reaction of alpha-pinene + NO3 under atmospherically relevant conditions.
  • Zhou, Putian; Ganzeveld, Laurens; Taipale, Ditte; Rannik, Ullar; Rantala, Pekka; Rissanen, Matti Petteri; Chen, Dean; Boy, Michael (2017)
    A multilayer gas dry deposition model has been developed and implemented into a one-dimensional chemical transport model SOSAA (model to Simulate the concentrations of Organic vapours, Sulphuric Acid and Aerosols) to calculate the dry deposition velocities for all the gas species included in the chemistry scheme. The new model was used to analyse in-canopy sources and sinks, including gas emissions, chemical production and loss, dry deposition, and turbulent transport of 12 featured biogenic volatile organic compounds (BVOCs) or groups of BVOCs (e.g. monoterpenes, isoprene+2-methyl-3-buten-2-ol (MBO), sesquiterpenes, and oxidation products of mono-and sesquiterpenes) in July 2010 at the boreal forest site SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations). According to the significance of modelled monthly-averaged individual source and sink terms inside the canopy, the selected BVOCs were classified into five categories: 1. Most of emitted gases are transported out of the canopy (monoterpenes, isoprene + MBO). 2. Chemical reactions remove a significant portion of emitted gases (sesquiterpenes). 3. Bidirectional fluxes occur since both emission and dry deposition are crucial for the in-canopy concentration tendency (acetaldehyde, methanol, acetone, formaldehyde). 4. Gases removed by deposition inside the canopy are compensated for by the gases transported from above the canopy (acetol, pinic acid, beta-caryophyllene's oxidation product BCSOZOH). 5. The chemical production is comparable to the sink by deposition (isoprene's oxidation products ISOP34OOH and ISOP34NO3). Most of the simulated sources and sinks were located above about 0.2 h(c) (canopy height) for oxidation products and above about 0.4 h(c) for emitted species except formaldehyde. In addition, soil deposition (including deposition onto understorey vegetation) contributed 11-61% to the overall in-canopy deposition. The emission sources peaked at about 0.8-0.9 h(c), which was higher than 0.6 h(c) where the maximum of dry deposition onto overstorey vegetation was located. This study provided a method to enable the quantification of the exchange between atmosphere and biosphere for numerous BVOCs, which could be applied in large-scale models in future. With this more explicit canopy exchange modelling system, this study analysed both the temporal and spatial variations in individual in-canopy sources and sinks, as well as their combined effects on driving BVOC exchange. In this study 12 featured BVOCs or BVOC groups were analysed. Other compounds could also be investigated similarly by being classified into these five categories.
  • Kurten, Theo; Rissanen, Matti P.; Mackeprang, Kasper; Thornton, Joel A.; Hyttinen, Noora; Jorgensen, Solvejg; Ehn, Mikael; Kjaergaard, Henrik G. (2015)
    Autoxidation by: sequential peroxy radical hydrogen shifts (H-shifts) and O-2 additions has recently emerged as a promising mechanism for the rapid formation of highly oxidized, low-Volatility organic Compounds in the. atmosphere: A kg prerequisite for auto)ddation is that the H-shifts of the initial peroxy radicals formed by, e.g., OH or O-3 oxidation are fast enough to compete with bimolecular sink reactions. In most atmospheric conditions, these restrict the lifetime Of peroxy.radicals to be on the order of seconds. We have systematically investigated all potentially important (nonmethyl, sterically unhindered) H-shifts of all four peroxy radicals formed in the ozonolysis of alpha-pinene using density functional (omega B97XD) and coupled cluster [CCSD(T)-F12] theory. In contrast to the related but chemically simpler tyclohexene ozonolysis system, none of the calculated li-shifts have rate constants above 1 s(-1) at 298 K, and most are below 0.01 s(-1). The law rate constants are connected to the presence of the' strained tyclobutyi sing in the alpha-pinene-derived peroxy radicals, which hinders H-shifts both from and across the ring. For autoxidation to yield the experimentally observed highly oxidized products in the alpha-pinene ozonolysis system, additional ring-opening reaction mechanisms breaking the cyclobutyl ring are therefore needed. We further investigate possible uni- and bimolecular pathways for,opening the cydobutyl ring in, the alpha-pinene ozonolysis system.
  • Zhou, L.; Gierens, R.; Sogachev, A.; Mogensen, D.; Ortega, J.; Smith, J. N.; Harley, P. C.; Prenni, A. J.; Levin, E. J. T.; Turnipseed, A.; Rusanen, A.; Smolander, S.; Guenther, A. B.; Kulmala, Markku; Karl, T.; Boy, M. (2015)
    New particle formation (NPF) is an important atmospheric phenomenon. During an NPF event, particles first form by nucleation and then grow further in size. The growth step is crucial because it controls the number of particles that can become cloud condensation nuclei. Among various physical and chemical processes contributing to particle growth, condensation by organic vapors has been suggested as important. In order to better understand the influence of biogenic emissions on particle growth, we carried out modeling studies of NPF events during the BEACHON-ROCS (Biohydro-atmosphere interactions of Energy, Aerosol, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Organic Carbon Study) campaign at Manitou Experimental Forest Observatory in Colorado, USA. The site is representative of the semi-arid western USA. With the latest Criegee intermediate reaction rates implemented in the chemistry scheme, the model underestimates sulfuric acid concentration by 50 %, suggesting either missing sources of atmospheric sulfuric acid or an overestimated sink term. The results emphasize the contribution from biogenic volatile organic compound emissions to particle growth by demonstrating the effects of the oxidation products of monoterpenes and 2-Methyl-3-buten-2-ol (MBO). Monoterpene oxidation products are shown to influence the nighttime particle loadings significantly, while their concentrations are insufficient to grow the particles during the day. The growth of ultrafine particles in the daytime appears to be closely related to the OH oxidation products of MBO.
  • Eriksson, A. C.; Wittbom, C.; Roldin, P.; Sporre, M.; Str M, E.; Nilsson, P.; Martinsson, J.; Rissler, J.; Nordin, E. Z.; Svenningsson, B.; Pagels, J.; Swietlicki, E. (2017)
    Fresh and aged diesel soot particles have different impacts on climate and human health. While fresh diesel soot particles are highly aspherical and non-hygroscopic, aged particles are spherical and hygroscopic. Aging and its effect on water uptake also controls the dispersion of diesel soot in the atmosphere. Understanding the timescales on which diesel soot ages in the atmosphere is thus important, yet knowledge thereof is lacking. We show that under cold, dark and humid conditions the atmospheric transformation from fresh to aged soot occurs on a timescale of less than five hours. Under dry conditions in the laboratory, diesel soot transformation is much less efficient. While photochemistry drives soot aging, our data show it is not always a limiting factor. Field observations together with aerosol process model simulations show that the rapid ambient diesel soot aging in urban plumes is caused by coupled ammonium nitrate formation and water uptake.
  • Quéléver, Lauriane L. J.; Kristensen, Kasper; Jensen, Louise Normann; Rosati, Bernadette; Teiwes, Ricky; Dällenbach, Kaspar; Peräkylä, Otso; Roldin, Pontus; Bossi, Rossana; Pedersen, Henrik B.; Glasius, Marianne; Bilde, Merete; Ehn, Mikael (2019)
    Highly oxygenated organic molecules (HOMs) are important contributors to secondary organic aerosol (SOA) and new-particle formation (NPF) in the boreal atmosphere. This newly discovered class of molecules is efficiently formed from atmospheric oxidation of biogenic volatile organic compounds (VOCs), such as monoterpenes, through a process called autoxidation. This process, in which peroxy-radical intermediates isomerize to allow addition of molecular oxygen, is expected to be highly temperature-dependent. Here, we studied the dynamics of HOM formation during a -pinene ozonolysis experiments performed at three different temperatures, 20, 0 and - 15 degrees C, in the Aarhus University Research on Aerosol (AURA) chamber. We found that the HOM formation, under our experimental conditions (50 ppb alpha-pinene and 100 ppb ozone), decreased considerably at lower temperature, with molar yields dropping by around a factor of 50 when experiments were performed at 0 degrees C, compared to 20 degrees C. At -15 degrees C, the HOM signals were already close to the detection limit of the nitrate-based chemical ionization atmospheric pressure interface time-of-flight (CI-APi-TOF) mass spectrometer used for measuring gas-phase HOMs. Surprisingly, comparing spectra measured at 0 and 20 degrees C, ratios between HOMs of different oxidation levels, e.g., the typical HOM products C10H14O7, C10H14O9, and C10H14O11, changed considerably less than the total HOM yields. More oxidized species have undergone more isomerization steps; yet, at lower temperature, they did not decrease more than the less oxidized species. One possible explanation is that the primary rate-limiting steps forming these HOMs occur before the products become oxygenated enough to be detected by our CI-APi-TOF (i.e., typically seven or more oxygen atoms). The strong temperature dependence of HOM formation was observed under temperatures highly relevant to the boreal forest, but the exact magnitude of this effect in the atmosphere will be much more complex: the fate of peroxy radicals is a competition between autoxidation (influenced by temperature and VOC type) and bimolecular termination pathways (influenced mainly by concentration of reaction partners). While the temperature influence is likely smaller in the boreal atmosphere than in our chamber, both the magnitude and complexity of this effect clearly deserve more consideration in future studies in order to estimate the ultimate role of HOMs on SOA and NPF under different atmospheric conditions.
  • Molteni, Ugo; Simon, Mario; Heinritzi, Martin; Hoyle, Christopher R.; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Dias, António; Duplissy, Jonathan; Frege, Carla; Gordon, Hamish; Heyn, Claudia; Jokinen, Tuija; Kürten, Andreas; Lehtipalo, Katrianne; Makhmutov, Vladimir; Petäjä, Tuukka; Pieber, Simone M.; Praplan, Arnaud P.; Schobesberger, Siegfried; Steiner, Gerhard; Stozhkov, Yuri; Tomé, António; Tröstl, Jasmin; Wagner, Andrea C.; Wagner, Robert; Williamson, Christina; Yan, Chao; Baltensperger, Urs; Curtius, Joachim; Donahue, Neil M.; Hansel, Armin; Kirkby, Jasper; Kulmala, Markku; Worsnop, Douglas R.; Dommen, Josef (2019)
    Terpenes are emitted by vegetation, and their oxidation in the atmosphere is an important source of secondary organic aerosol (SOA). A part of this oxidation can proceed through an autoxidation process, yielding highly oxygenated organic molecules (HOMs) with low saturation vapor pressure. They can therefore contribute, even in the absence of sulfuric acid, to new particle formation (NPF). The understanding of the autoxidation mechanism and its kinetics is still far from complete. Here, we present a mechanistic and kinetic analysis of mass spectrometry data from α-pinene (AP) ozonolysis experiments performed during the CLOUD 8 campaign at CERN. We grouped HOMs in classes according to their identified chemical composition and investigated the relative changes of these groups and their components as a function of the reagent concentration. We determined reaction rate constants for the different HOM peroxy radical reaction pathways. The accretion reaction between HOM peroxy radicals was found to be extremely fast. We developed a pseudo-mechanism for HOM formation and added it to the AP oxidation scheme of the Master Chemical Mechanism (MCM). With this extended model, the observed concentrations and trends in HOM formation were successfully simulated.
  • Praplan, Arnaud P.; Tykka, Toni; Chen, Dean; Boy, Michael; Taipale, Ditte; Vakkari, Ville; Zhou, Putian; Petaja, Tuukka; Hellen, Heidi (2019)
    Total hydroxyl radical (OH) reactivity measurements were conducted at the second Station for Measuring Ecosystem-Atmosphere Relations (SMEAR II), a boreal forest site located in Hyytiala, Finland, from April to July 2016. The measured values were compared with OH reactivity calculated from a combination of data from the routine trace gas measurements (station mast) as well as online and offline analysis with a gas chromatographer coupled to a mass spectrometer (GC-MS) and offline liquid chromatography. Up to 104 compounds, mostly volatile organic compounds (VOCs) and oxidized VOCs, but also inorganic compounds, were included in the analysis, even though the data availability for each compound varied with time. The monthly averaged experimental total OH reactivity was found to be higher in April and May (ca. 20 s(-1)) than in June and July (7.6 and 15.4 s(-1), respectively). The measured values varied much more in spring with high reactivity peaks in late afternoon, with values higher than in the summer, in particular when the soil was thawing. Total OH reactivity values generally followed the pattern of mixing ratios due to change of the boundary layer height. The missing reactivity fraction (defined as the difference between measured and calculated OH reactivity) was found to be high. Several reasons that can explain the missing reactivity are discussed in detail such as (1) missing measurements due to technical issues, (2) not measuring oxidation compounds of detected biogenic VOCs, and (3) missing important reactive compounds or classes of compounds with the available measurements. In order to test the second hypothesis, a one-dimensional chemical transport model (SOSAA) has been used to estimate the amount of unmeasured oxidation products and their expected contribution to the reactivity for three different short periods in April, May, and July. However, only a small fraction (<4.5 %) of the missing reactivity can be explained by modelled secondary compounds (mostly oxidized VOCs). These findings indicate that compounds measured but not included in the model as well as unmeasured primary emissions contribute the missing reactivity. In the future, non-hydrocarbon compounds from sources other than vegetation (e.g. soil) should be included in OH reactivity studies.
  • Ostrom, Emilie; Putian, Zhou; Schurgers, Guy; Mishurov, Mikhail; Kivekas, Niku; Lihavainen, Heikki; Ehn, Mikael; Rissanen, Matti P.; Kurten, Theo; Boy, Michael; Swietlicki, Erik; Roldin, Pontus (2017)
    In this study, the processes behind observed new particle formation (NPF) events and subsequent organicdominated particle growth at the Pallas AtmosphereEcosystem Supersite in Northern Finland are explored with the one-dimensional column trajectory model ADCHEM. The modeled sub-micron particle mass is up to similar to 75% composed of SOA formed from highly oxidized multifunctional organic molecules (HOMs) with low or extremely low volatility. In the model the newly formed particles with an initial diameter of 1.5 nm reach a diameter of 7 nm about 2 h earlier than what is typically observed at the station. This is an indication that the model tends to overestimate the initial particle growth. In contrast, the modeled particle growth to CCN size ranges (> 50 nm in diameter) seems to be underestimated because the increase in the concentration of particles above 50 nm in diameter typically occurs several hours later compared to the observations. Due to the high fraction of HOMs in the modeled particles, the oxygen-to-carbon (O V C) atomic ratio of the SOA is nearly 1. This unusually high O V C and the discrepancy between the modeled and observed particle growth might be explained by the fact that the model does not consider any particle-phase reactions involving semi-volatile organic compounds with relatively low O V C. In the model simulations where condensation of low-volatility and extremely low-volatility HOMs explain most of the SOA formation, the phase state of the SOA (assumed either liquid or amorphous solid) has an insignificant impact on the evolution of the particle number size distributions. However, the modeled particle growth rates are sensitive to the method used to estimate the vapor pressures of the HOMs. Future studies should evaluate how heterogeneous reactions involving semi-volatility HOMs and other less-oxidized organic compounds can influence the SOA composition-and size-dependent particle growth.
  • Roldin, P.; Liao, L.; Mogensen, D.; Dal Maso, M.; Rusanen, A.; Kerminen, V. -M.; Mentel, T. F.; Wildt, J.; Kleist, E.; Kiendler-Scharr, A.; Tillmann, R.; Ehn, M.; Kulmala, Markku; Boy, M. (2015)
    We used the Aerosol Dynamics gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM) to simulate the contribution of BVOC plant emissions to the observed new particle formation during photooxidation experiments performed in the Julich Plant-Atmosphere Chamber and to evaluate how well smog chamber experiments can mimic the atmospheric conditions during new particle formation events. ADCHAM couples the detailed gas-phase chemistry from Master Chemical Mechanism with a novel aerosol dynamics and particle phase chemistry module. Our model simulations reveal that the observed particle growth may have either been controlled by the formation rate of semi- and low-volatility organic compounds in the gas phase or by acid catalysed heterogeneous reactions between semi-volatility organic compounds in the particle surface layer (e.g. peroxyhemiacetal dimer formation). The contribution of extremely low-volatility organic gas-phase compounds to the particle formation and growth was suppressed because of their rapid and irreversible wall losses, which decreased their contribution to the nano-CN formation and growth compared to the atmospheric situation. The best agreement between the modelled and measured total particle number concentration (R-2 > 0.95) was achieved if the nano-CN was formed by kinetic nucleation involving both sulphuric acid and organic compounds formed from OH oxidation of BVOCs.
  • Lumiaro, Emma; Todorović, Milica; Kurten, Theo; Vehkamäki, Hanna; Rinke, Patrick (2021)
    The formation, properties, and lifetime of secondary organic aerosols in the atmosphere are largely determined by gas-particle partitioning coefficients of the participating organic vapours. Since these coefficients are often difficult to measure and to compute, we developed a machine learning model to predict them given molecular structure as input. Our data-driven approach is based on the dataset by Wang et al. (2017), who computed the partitioning coefficients and saturation vapour pressures of 3414 atmospheric oxidation products from the Master Chemical Mechanism using the COSMOtherm programme. We trained a kernel ridge regression (KRR) machine learning model on the saturation vapour pressure (P-sat) and on two equilibrium partitioning coefficients: between a water-insoluble organic matter phase and the gas phase (K-WIOM/G) and between an infinitely dilute solution with pure water and the gas phase (K-W/G). For the input representation of the atomic structure of each organic molecule to the machine, we tested different descriptors. We find that the many-body tensor representation (MBTR) works best for our application, but the topological fingerprint (TopFP) approach is almost as good and computationally cheaper to evaluate. Our best machine learning model (KRR with a Gaussian kernel + MBTR) predicts P-sat and K-WIOM/G to within 0.3 logarithmic units and K-W/G to within 0.4 logarithmic units of the original COSMOtherm calculations. This is equal to or better than the typical accuracy of COSMOtherm predictions compared to experimental data (where available). We then applied our machine learning model to a dataset of 35 383 molecules that we generated based on a carbon-10 backbone functionalized with zero to six carboxyl, carbonyl, or hydroxyl groups to evaluate its performance for polyfunctional compounds with potentially low P-sat. The resulting saturation vapour pressure and partitioning coefficient distributions were physico-chemically reasonable, for example, in terms of the average effects of the addition of single functional groups. The volatility predictions for the most highly oxidized compounds were in qualitative agreement with experimentally inferred volatilities of, for example, alpha-pinene oxidation products with as yet unknown structures but similar elemental compositions.
  • Roldin, Pontus; Ehn, Mikael; Kurten, Theo; Olenius, Tinja; Rissanen, Matti P.; Sarnela, Nina; Elm, Jonas; Rantala, Pekka; Hao, Liqing; Hyttinen, Noora; Heikkinen, Liine; Worsnop, Douglas; Pichelstorfer, Lukas; Xavier, Carlton; Clusius, Petri; Öström, Emilie; Petäjä, Tuukka; Kulmala, Markku; Vehkamäki, Hanna; Virtanen, Annele; Riipinen, Ilona; Boy, Michael (2019)
    Over Boreal regions, monoterpenes emitted from the forest are the main precursors for secondary organic aerosol (SOA) formation and the primary driver of the growth of new aerosol particles to climatically important cloud condensation nuclei (CCN). Autoxidation of monoterpenes leads to rapid formation of Highly Oxygenated organic Molecules (HOM). We have developed the first model with near-explicit representation of atmospheric new particle formation (NPF) and HOM formation. The model can reproduce the observed NPF, HOM gas-phase composition and SOA formation over the Boreal forest. During the spring, HOM SOA formation increases the CCN concentration by similar to 10 % and causes a direct aerosol radiative forcing of -0.10 W/m(2). In contrast, NPF reduces the number of CCN at updraft velocities <0.2 m/s, and causes a direct aerosol radiative forcing of +0.15 W/m(2). Hence, while HOM SOA contributes to climate cooling, NPF can result in climate warming over the Boreal forest.