Browsing by Subject "TWINKLE"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Rodrigues, Ana Paula C.; Camargo, Andre F.; Andjelkovic, Ana; Jacobs, Howard T.; Oliveira, Marcos T. (2018)
    The xenotopic expression of the alternative oxidase AOX from the tunicate Ciona intestinalis in diverse models of human disease partially alleviates the phenotypic effects of mitochondrial respiratory chain defects. AOX is a non-proton pumping, mitochondrial inner membrane-bound, single-subunit enzyme that can bypass electron transport through the cytochrome segment, providing an additional site for ubiquinone reoxidation and oxygen reduction upon respiratory chain overload. We set out to investigate whether AOX expression in Drosophila could counteract the effects of mitochondrial DNA (mtDNA) replication defects caused by disturbances in the mtDNA helicase or DNA polymerase gamma. We observed that the developmental arrest imposed by either the expression of mutant forms of these enzymes or their knockdown was not rescued by AOX. Considering also the inability of AOX to ameliorate the phenotype of tko(25t), a fly mutant with mitochondrial translation deficiency, we infer that this alternative enzyme may not be applicable to cases of mitochondrial gene expression defects. Finding the limitations of AOX applicability will help establish the parameters for the future putative use of this enzyme in gene therapies for human mitochondrial diseases.
  • Ignatenko, Olesia; Chilov, Dmitri; Paetau, Ilse; de Miguel, Elena; Jackson, Christopher B.; Capin, Gabrielle; Paetau, Anders; Terzioglu, Mugen; Euro, Liliya; Suomalainen, Anu (2018)
    Mitochondrial dysfunction manifests as different neurological diseases, but the mechanisms underlying the clinical variability remain poorly understood. To clarify whether different brain cells have differential sensitivity to mitochondrial dysfunction, we induced mitochondrial DNA (mtDNA) depletion in either neurons or astrocytes of mice, by inactivating Twinkle (TwKO), the replicative mtDNA helicase. Here we show that astrocytes, the most abundant cerebral cell type, are chronically activated upon mtDNA loss, leading to early-onset spongiotic degeneration of brain parenchyma, microgliosis and secondary neurodegeneration. Neuronal mtDNA loss does not, however, cause symptoms until 8 months of age. Findings in astrocyte-TwKO mimic neuropathology of Alpers syndrome, infantile-onset mitochondrial spongiotic encephalopathy caused by mtDNA maintenance defects. Our evidence indicates that (1) astrocytes are dependent on mtDNA integrity; (2) mitochondrial metabolism contributes to their activation; (3) chronic astrocyte activation has devastating consequences, underlying spongiotic encephalopathy; and that (4) astrocytes are a potential target for interventions.
  • Ignatenko, Olesia; Nikkanen, Joni; Kononov, Alexander; Zamboni, Nicola; Ince-Dunn, Gulayse; Suomalainen Wartiovaara, Anu (2020)
    Mitochondrial DNA (mtDNA) depletion syndrome (MDS) is a group of severe, tissue-specific diseases of childhood with unknown pathogenesis. Brain-specific MDS manifests as devastating spongiotic encephalopathy with no curative therapy. Here, we report cell type-specific stress responses and effects of rapamycin treatment and ketogenic diet (KD) in mice with spongiotic encephalopathy mimicking human MDS, as these interventions were reported to improve some mitochondrial disease signs or symptoms. Thesemice with astrocyte-specific knockout of Twnk gene encoding replicative mtDNA helicase Twinkle (TwKO(astro)) show wide-spread cell-autonomous astrocyte activation and mitochondrial integrated stress response (ISRmt) induction with major metabolic remodeling of the brain. Mice with neuronal-specific TwKO show no ISRmt. Both KD and rapamycin lead to rapid deterioration and weight loss of TwKO(astro) and premature trial termination. Although rapamycin had no robust effects on TwKO(astro) brain pathology, KD exacerbated spongiosis, gliosis, and ISRmt. Our evidence emphasizes that mitochondrial disease treatments and stress responses are tissue- and disease specific. Furthermore, rapamycin and KD are deleterious in MDS-linked spongiotic encephalopathy, pointing to a crucial role of diet and metabolism for mitochondrial disease progression.
  • Shi, Yonghong; Posse, Viktor; Zhu, Xuefeng; Hyvärinen, Anne K.; Jacobs, Howard T.; Falkenberg, Maria; Gustafsson, Claes M. (2016)
    During replication of nuclear ribosomal DNA (rDNA), clashes with the transcription apparatus can cause replication fork collapse and genomic instability. To avoid this problem, a replication fork barrier protein is situated downstream of rDNA, there preventing replication in the direction opposite rDNA transcription. A potential candidate for a similar function in mitochondria is the mitochondrial transcription termination factor 1 (MTERF1, also denoted mTERF), which binds to a sequence just downstream of the ribosomal transcription unit. Previous studies have shown that MTERF1 prevents antisense transcription over the ribosomal RNA genes, a process which we here show to be independent of the transcription elongation factor TEFM. Importantly, we now demonstrate that MTERF1 arrests mitochondrial DNA (mtDNA) replication with distinct polarity. The effect is explained by the ability of MTERF1 to act as a directional contrahelicase, blocking mtDNA unwinding by the mitochondrial helicase TWINKLE. This conclusion is also supported by in vivo evidence that MTERF1 stimulates TWINKLE pausing. We conclude that MTERF1 can direct polar replication fork arrest in mammalian mitochondria.
  • Torregrosa-Munumer, Ruben; Hangas, Anu; Goffart, Steffi; Blei, Daniel; Zsurka, Gabor; Griffith, Jack; Kunz, Wolfram S.; Pohjoismäki, Jaakko L. O. (2019)
    Replication stalling has been associated with the formation of pathological mitochondrial DNA (mtDNA) rearrangements. Yet, almost nothing is known about the fate of stalled replication intermediates in mitochondria. We show here that replication stalling in mitochondria leads to replication fork regression and mtDNA double-strand breaks. The resulting mtDNA fragments are normally degraded by a mechanism involving the mitochondrial exonuclease MGME1, and the loss of this enzyme results in accumulation of linear and recombining mtDNA species. Additionally, replication stress promotes the initiation of alternative replication origins as an apparent means of rescue by fork convergence. Besides demonstrating an interplay between two major mechanisms rescuing stalled replication forks - mtDNA degradation and homology-dependent repair - our data provide evidence that mitochondria employ similar mechanisms to cope with replication stress as known from other genetic systems.