Browsing by Subject "TYROSINE-HYDROXYLASE"

Sort by: Order: Results:

Now showing items 1-11 of 11
  • Albert, Katrina; Voutilainen, Merja H.; Domanskyi, Andrii; Airavaara, Mikko (2017)
    Gene delivery using adeno-associated virus (AAV) vectors is a widely used method to transduce neurons in the brain, especially due to its safety, efficacy, and long-lasting expression. In addition, by varying AAV serotype, promotor, and titer, it is possible to affect the cell specificity of expression or the expression levels of the protein of interest. Dopamine neurons in the substantia nigra projecting to the striatum, comprising the nigrostriatal pathway, are involved in movement control and degenerate in Parkinson's disease. AAV-based gene targeting to the projection area of these neurons in the striatum has been studied extensively to induce the production of neurotrophic factors for disease-modifying therapies for Parkinson's disease. Much less emphasis has been put on AAV-based gene therapy targeting dopamine neurons in substantia nigra. We will review the literature related to targeting striatum and/or substantia nigra dopamine neurons using AAVs in order to express neuroprotective and neurorestorative molecules, as well as produce animal disease models of Parkinson's disease. We discuss difficulties in targeting substantia nigra dopamine neurons and their vulnerability to stress in general. Therefore, choosing a proper control for experimental work is not trivial. Since the axons along the nigrostriatal tract are the first to degenerate in Parkinson's disease, the location to deliver the therapy must be carefully considered. We also review studies using AAV--synuclein (-syn) to target substantia nigra dopamine neurons to produce an -syn overexpression disease model in rats. Though these studies are able to produce mild dopamine system degeneration in the striatum and substantia nigra and some behavioural effects, there are studies pointing to the toxicity of AAV-carrying green fluorescent protein (GFP), which is often used as a control. Therefore, we discuss the potential difficulties in overexpressing proteins in general in the substantia nigra.
  • Kilpeläinen, Tommi; Julku, Ulrika; Svarcbahs, Reinis; Myöhänen, Timo (2019)
    Alpha-synuclein (aSyn) is the main component of Lewy bodies, the histopathological marker in Parkinson's disease (PD), and point mutations and multiplications of the aSyn coding SNCA gene correlate with early onset PD. Therefore, various transgenic mouse models overexpressing native or point-mutated aSyn have been developed. Although these models show highly increased aSyn expression they rarely capture dopaminergic cell loss and show a behavioural phenotype only at old age, whereas SNCA mutations are risk factors for PD with earlier onset. The aim of our study was to re-characterize a transgenic mouse strain carrying both A30P and A53T mutated human aSyn. Our study revealed decreased locomotor activity for homozygous transgenic mice starting from 3 months of age which was different from previous studies with this mouse strain that had behavioural deficits starting only after 7-9 months. Additionally, we found a decreased amphetamine response in locomotor activity and decreased extracellular dopaminergic markers in the striatum and substantia nigra with significantly elevated levels of aSyn oligomers. In conclusion, homozygous transgenic A30P*A53T aSyn mice capture several phenotypes of PD with early onset and could be a useful tool for aSyn studies.
  • Sidorova, Yulia A.; Saarma, Mart (2020)
    Growth factors (GFs) hold considerable promise for disease modification in neurodegenerative disorders because they can protect and restore degenerating neurons and also enhance their functional activity. However, extensive efforts applied to utilize their therapeutic potential in humans have achieved limited success so far. Multiple clinical trials with GFs were performed in Parkinson's disease (PD) patients, in whom diagnostic symptoms of the disease are caused by advanced degeneration of nigrostriatal dopamine neurons (DNs), but the results of these trials are controversial. This review discusses recent developments in the field of therapeutic use of GFs, problems and obstacles related to this use, suggests the ways to overcome these issues, and alternative approaches that can be used to utilize the potential of GFs in PD management.
  • Turconi, Giorgio; Kopra, Jaakko; Võikar, Vootele; Kulesskaya, Natalia; Vilenius, Carolina; Piepponen, T. Petteri; Andressoo, Jaan-Olle (2020)
    Glial cell line-derived neurotrophic factor (GDNF) supports function and survival of dopamine neurons that degenerate in Parkinson's disease (PD). Ectopic delivery of GDNF in clinical trials to treat PD is safe but lacks significant therapeutic effect. In pre-clinical models, ectopic GDNF is effective but causes adverse effects, including downregulation of tyrosine hydroxylase, only a transient boost in dopamine metabolism, aberrant neuronal sprouting, and hyperactivity. Hindering development of GDNF mimetic increased signaling via GDNF receptor RET by activating mutations results in cancer. Safe and effective mode of action must be defined first in animal models to develop successful GDNF-based therapies. Previously we showed that about a 2-fold increase in endogenous GDNF expression is safe and results in increased motor and dopaminergic function and protection in a PD model in young animals. Recently, similar results were reported using a novel Gdnf mRNA-targeting strategy. Next, it is important to establish the safety of a long-term increase in endogenous GDNF expression. We report behavioral, dopamine system, and cancer analysis of five cohorts of aged mice with a 2-fold increase in endogenous GDNF. We found a sustained increase in dopamine levels, improvement in motor learning, and no side effects or cancer. These results support the rationale for further development of endogenous GDNF-based treatments and GDNF mimetic.
  • Voutilainen, Merja H.; De Lorenzo, Francesca; Stepanova, Polina; Bäck, Susanne; Pulkkila, Päivi; Pörsti, Eeva; Saarma, Mart; Männistö, Pekka T.; Tuominen, Raimo K. (2017)
    Parkinson's disease (PD) is a neurodegenerative disorder associated with a progressive loss of dopaminergic (DAergic) neurons of the substantia nigra (SN) and the accumulation of intracellular inclusions containing alpha-synuclein. Current therapies do not stop the progression of the disease, and the efficacy of these treatments wanes over time. Neurotrophic factors (NTFs) are naturally occurring proteins promoting the survival and differentiation of neurons and the maintenance of neuronal contacts. CDNF (cerebral dopamine NTF) and GDNF (glial cell line-derived NTF) are able to protect DAergic neurons against toxin-induced degeneration in experimental models of PD. Here, we report an additive neurorestorative effect of coadministration of CDNF and GDNF in the unilateral 6-hydroxydopamine (6-OHDA) lesion model of PD in rats. NTFs were given into the striatum four weeks after unilateral intrastriatal injection of 6-OHDA (20 mu g). Amphetamine-induced (2.5 mg/kg, i.p.) rotational behavior was measured every two weeks. Number of tyrosine hydroxylase (TH)-positive cells from SN pars compacta (SNpc) and density of TH-positive fibers in the striatum were analyzed at 12 weeks after lesion. CDNF and GDNF alone restored the DAergic function, and one specific dose combination had an additive effect: CDNF (2.5 mu g) and GDNF (1 mu g) coadministration led to a stronger trophic effect relative to either of the single treatments alone. The additive effect may indicate different mechanism of action for the NTFs. Indeed, both NTFs activated the survival promoting PI3 kinase (PI3K)-Akt signaling pathway, but only CDNF decreased the expression level of tested endoplasmatic reticulum (ER) stress markers ATF6, glucose-regulated protein 78 (GRP78), and phosphorylation of eukaryotic initiation factor 2 alpha subunit (eIF2 alpha).
  • Savolainen, Mari H.; Albert, Katrina; Airavaara, Mikko; Myohänen, Timo T. (2017)
    Proteinaceous inclusions, called Lewy bodies, are used as a pathological hallmark for Parkinson's disease (PD). Lewy bodies contain insoluble alpha-synuclein (aSyn) and many other ubiquitinated proteins, suggesting a role for protein degradation system failure in the PD pathogenesis. Indeed, proteasomal dysfunction has been linked to PD but commonly used in vivo toxin models, such as 6-OHDA or MPTP, do not have a significant effect on the proteasomal system or protein aggregation. Therefore, we wanted to study the characteristics of a proteasomal inhibitor, lactacystin, as a PD model on young and adult mice. To study this, we performed stereotactic microinjection of lactacystin above the substantia nigra pars compacta in young (2 month old) and adult (12-14 month old) C57Bl/6 mice. Motor behavior was measured by locomotor activity and cylinder tests, and the markers of neuroinflammation, aSyn, and dopaminergic system were assessed by immunohistochemistry and HPLC. We found that lactacystin induced a Parkinson's disease-like motor phenotype 5-7 days after injection in young and adult mice, and this was associated with widespread neuroinflammation based on glial cell markers, aSyn accumulation in substantia nigra, striatal dopamine decrease, and loss of dopaminergic cell bodies in the substantia nigra and terminals in the striatum. When comparing young and adult mice, adult mice were more sensitive for dopaminergic degeneration after lactacystin injection that further supports the use of adult mice instead of young when modeling neurodegeneration. Our data showed that lactacystin is useful in modeling various aspects of Parkinson's disease, and taken together, our findings emphasize the role of a protein degradation deficit in Parkinson's disease pathology, and support the use of proteasomal inhibitors as Parkinson's disease models.
  • Priyadarshini, Madhusmita; Orosco, Lori A.; Panula, Pertti J. (2013)
  • Penttinen, Anna-Maija; Parkkinen, Ilmari; Voutilainen, Merja H.; Koskela, Maryna; Bäck, Susanne; Their, Anna; Richie, Christopher T.; Domanskyi, Andrii; Harvey, Brandon K.; Tuominen, Raimo K.; Nevalaita, Liina; Saarma, Mart; Airavaara, Mikko (2018)
    Glial cell line-derived neurotrophic factor (GDNF) is one of the most studied neurotrophic factors. GDNF has two splice isoforms, full-length pre-alpha-pro-GDNF (u-GDNF) and pre-beta-pro-GDNF (beta-GDNF), which has a 26 amino acid deletion in the pro-region. Thus far, studies have focused solely on the u-GDNF isoform, and nothing is known about the in vivo effects of the shorter beta-GDNF variant. Here we compare for the first time the effects of overexpressed cx-GDNF and beta-GDNF in non-lesioned rat striatum and the partial 6-hydroxydopamine lesion model of Parkinson's disease. GDNF isoforms were overexpressed with their native pre-pro-sequences in the striatum using an adeno-associated virus (AAV) vector, and the effects on motor performance and dopaminergic phenotype of the nigrostriatal pathway were assessed. In the non-lesioned striatum, both isoforms increased the density of dopamine transporter-positive fibers at 3 weeks after viral vector delivery. Although both isoforms increased the activity of the animals in cylinder assay, only u-GDNF enhanced the use of contralateral paw. Four weeks later, the striatal tyrosine hydroxylase (TH)-immunoreactivity was decreased in both u-GDNF and 1-GDNF treated animals. In the neuroprotection assay, both GDNF splice isoforms increased the number of TH-immunoreactive cells in the substantia nigra but did not promote behavioral recovery based on amphetamine-induced rotation or cylinder assays. Thus, the shorter GDNF isoform, beta-GDNF, and the full-length alpha-isoform have comparable neuroprotective efficacy on dopamine neurons of the nigrostriatal circuitry.
  • Glerup, Simon; Lume, Maria; Olsen, Ditte; Nyengaard, Jens R.; Vaegter, Christian B.; Gustafsen, Camilla; Christensen, Erik I.; Kjolby, Mads; Hay-Schmidt, Anders; Bender, Dirk; Madsen, Peder; Saarma, Mart; Nykjaer, Anders; Petersen, Claus M. (2013)
  • Dahoun, Tarik; Pardinas, Antonio F.; Veronese, Mattia; Bloomfield, Michael A. P.; Jauhar, Sameer; Bonoldi, Ilaria; Froudist-Walsh, Sean; Nosarti, Chiara; Korth, Carsten; Hennah, William; Walters, James; Prata, Diana; Howes, Oliver D. (2018)
    Whilst the role of the Disrupted-in-Schizophrenia 1 (DISC1) gene in the aetiology of major mental illnesses is debated, the characterization of its function lends it credibility as a candidate. A key aspect of this functional characterization is the determination of the role of common non-synonymous polymorphisms on normal variation within these functions. The common allele (A) of the DISCI single-nucleotide polymorphism (SNP) rs821616 encodes a serine (ser) at the Ser704Cys polymorphism, and has been shown to increase the phosphorylation of extracellular signal-regulated protein Kinases 1 and 2 (ERK1/2) that stimulate the phosphorylation of tyrosine hydroxylase, the rate-limiting enzyme for dopamine biosynthesis. We therefore set out to test the hypothesis that human ser (A) homozygotes would show elevated dopamine synthesis capacity compared with cysteine (cys) homozygotes and heterozygotes (TT and AT) for rs821616. [F-18]-DOPA positron emission tomography (PET) was used to index striatal dopamine synthesis capacity as the influx rate constant K-i(cer) in healthy volunteers DISC1 rs821616 ser homozygotes (N = 46) and healthy volunteers DISC1. rs821616 cys homozygotes and heterozygotes (N = 56), matched for age, gender, ethnicity and using three scanners. We found DISC1 rs821616 ser homozygotes exhibited a significantly higher striatal K-i(cer) compared with cys homozygotes and heterozygotes (P = 0.012) explaining 6.4% of the variance (partial eta(2) = 0.064). Our finding is consistent with its previous association with heightened activation of ERK1/2, which stimulates tyrosine hydroxylase activity for dopamine synthesis. This could be a potential mechanism mediating risk for psychosis, lending further credibility to the fact that DISC1. is of functional interest in the aetiology of major mental illness.
  • Mätlik, Kärt; Võikar, Vootele; Vilenius, Carolina; Kulesskaya, Natalia; Andressoo, Jaan-Olle (2018)
    Glial cell line-derived neurotrophic factor (GDNF) promotes the survival of dopaminergic neurons in vitro and in vivo. For this reason, GDNF is currently in clinical trials for the treatment of Parkinson’s disease (PD). However, how endogenous GDNF influences dopamine system function and animal behavior is not fully understood. We recently generated GDNF hypermorphic mice that express increased levels of endogenous GDNF from the native locus, resulting in augmented function of the nigrostriatal dopamine system. Specifically, Gdnf wt/hyper mice have a mild increase in striatal and midbrain dopamine levels, increased dopamine transporter activity, and 15% increased numbers of midbrain dopamine neurons and striatal dopaminergic varicosities. Since changes in the dopamine system are implicated in several neuropsychiatric diseases, including schizophrenia, attention deficit hyperactivity disorder (ADHD) and depression, and ectopic GDNF delivery associates with side-effects in PD models and clinical trials, we further investigated Gdnf wt/hyper mice using 20 behavioral tests. Despite increased dopamine levels, dopamine release and dopamine transporter activity, there were no differences in psychiatric disease related phenotypes. However, compared to controls, male Gdnf wt/hyper mice performed better in tests measuring motor function. Therefore, a modest elevation of endogenous GDNF levels improves motor function but does not induce adverse behavioral outcomes.