Browsing by Subject "URBAN"

Sort by: Order: Results:

Now showing items 1-18 of 18
  • Cavalli, F.; Alastuey, A.; Areskoug, H.; Ceburnis, D.; Cech, J.; Genberg, J.; Harrison, R. M.; Jaffrezo, J. L.; Kiss, G.; Laj, P.; Mihalopoulos, N.; Perez, N.; Quincey, P.; Schwarz, J.; Sellegri, K.; Spindler, G.; Swietlicki, E.; Theodosi, C.; Yttri, K. E.; Aas, W.; Putaud, J. P. (2016)
    Although particulate organic and elemental carbon (OC and EC) are important constituents of the suspended atmospheric particulate matter (PM), measurements of OC and EC are much less common and More uncertain than measurements of e.g. the ionic components of PM. In the framework of atmospheric research infrastructures supported by the European Union, actions have been undertaken to determine and mitigate sampling artefacts, and assess the comparability of OC and EC data obtained in a network of 10 atmospheric observatories across Europe. Positive sampling artefacts (from 0:4 to 2.8 mu g C/m(3)) and analytical discrepancies (between -50% and +40% for the EC/TC ratio) have been taken into account to generate a robust data set, from which we established the phenomenology of carbonaceous aerosols at regional background sites in Europe. Across the network, TC and EC annual average concentrations range from 0.4 to 9 mu g C/m(3), and from 0.1 to 2 mu g C/m(3), respectively. TC/PM10 annual mean ratios range from 0.11 at a Mediterranean site to 0.34 at the most polluted continental site, and TC/PM2.5 ratios are slightly greater at all sites (0.15-0.42). EC/TC annual mean ratios range from 0.10 to 0.22, and do not depend much on PM concentration levels, especially in winter. Seasonal variations in PM and TC concentrations, and in TC/PM and EC/TC ratios, differ across the network, which can be explained by seasonal changes in PM source contributions at some sites. (C) 2016 The Authors. Published by Elsevier Ltd.
  • Arteaga, Alba; Malumbres-Olarte, Jagoba; Gabriel, Rosalina; Ros-Prieto, Alejandra; Casimiro, Pedro; Sanchez, Ana Fuentes; Albergaria, Isabel S.; Borges, Paulo A. V. (2020)
    The aim of our study was to characterise and compare the richness and composition of endemic, native (non-endemic) and introduced arthropod assemblages of two Azorean Historic Gardens with contrasting plant species composition. We hypothesised that Faial Botanic Garden would hold higher arthropod diversity and abundance of native and endemic arthropod species due to its larger native plant community. Species were collected using several arthropod standardised techniques between April 2017 and June 2018. We used the alpha diversity metrics (Hill series) and the partitioning of total beta diversity (beta(total)) into its replacement (beta(repl)) and richness (beta(rich)) components, to analyse the adult and total arthropod community. The orders Araneae, Coleoptera and Hemiptera were also studied separately. Our results show that the number of exotic arthropod species exceeds the number of native and/or the endemic species in both gardens, but the arthropod community of Faial Botanic Garden exhibited a higher density of endemic and native species. Despite some minor exceptions, the geographic origins of plant communities largely influenced the arthropod species sampled in each garden. This study improves our knowledge about urban arthropod diversity in the Azores and shows how well-designed urban garden management and planning contribute to the conservation of native and endemic Azorean species.
  • Turoma, Sanna; Ratilainen, Saara; Trubina, Elena (2018)
    This special issue originates from a transnational collaboration of scholars in philology, comparative literature, social theory, sociology, anthropology, ethnography, and media studies. The collection strives to advance a research agenda built on the nexus of three intellectual and academic domains: post-Soviet Russian cultural studies', the research paradigm put forward by Cultural Studies, as well as empirical methods developed in sociology. The collection illustrates the importance of expanding the experience of Cultural Studies beyond its established spheres of national investigation, while it also speaks to the necessity to re-evaluate the hegemony of the English-language academic and cultural production on the global scale. The collection offers insights into the gamut of cultural practices and institutional environments in which Russian cultural production happens today. It shows how cultural industries and institutions in Russia are integrated into the global marketplace and transnational communities, while they also draw on and contribute to local lives and experiences by trying to create an autonomous space for symbolic production at personal and collective levels. Through diverse topics, the issue sheds light on the agency, i.e. practitioners and participants, creators and consumers, of Russian cultural production and the neoliberal practices implemented on creative work and cultural administration in Russia today. The Introduction outlines the development of academic studies on Russian cultural practices since 1991; describes main political developments shaping the cultural field in Putin's Russia; and, finally, identifies the Cultural Studies debates the editors of the collection find most productive for investigations of Russia, i.e. the instrumentalization of culture and culture as resource. Relocated in an analysis of a post-socialist society, these conceptualisations seem increasingly problematic in a situation where local and federal policies governing cultural and creative work focus simultaneously on marketization and on nationalism as the main tools of legitimizing the federal government.
  • Moen, Gro Kvelprud; Ordiz, Andres; Kindberg, Jonas; Swenson, Jon E.; Sundell, Janne; Stoen, Ole-Gunnar (2019)
    Human disturbance causes behavioral responses in wildlife, including large carnivores. Previous research in Scandinavia has documented that brown bears (Ursus arctos) show a variety of behavioral reactions to different human activities. We investigated how proximity to human settlements and roads, as proxies of human influence, affected brown bears' reactions to encountering humans. We analyzed experimental approaches to GPS collared bears, 18 males and 23 single females, in Sweden (n = 148 approaches) and Finland (n = 33), conducted between 2004 and 2012. The bears in Finland inhabited areas with higher human density compared to Sweden. However, the proportion of bears staying or moving when approached and the flight initiation distances were similar in both countries. In Sweden, the flight responses were not dependent on human densities or roads inside the bears' home ranges or the distances from the bears to roads and settlements. Brown bears in Fennoscandia live in areas with relatively low human population densities, but in many areas with high forestry road densities. Our results show that bears' flight reactions were consistent between areas, which is an important message for management, reinforcing previous studies that have documented human avoidance by bears at different spatial and temporal scales.
  • Asplund, Therese; Neset, Tina-Simone; Käyhkö, Janina; Wiréhn, Lotten; Juhola, Sirkku (2019)
    The use of digital tools and interactive technologies for farming systems has increased rapidly in recent years and is likely to continue to play a significant role in meeting future challenges. Particularly games and gaming are promising new and innovative communication strategies to inform and engage public and stakeholders with scientific research. This study offers an analysis of how a research based game on climate change maladaptation can support, but also hinder players’ sense-making processes. Through the analysis of eight gaming workshops, this study identifies challenges and support for the players’ sense-making. While it concludes that conceptual thinking of game content sometimes clashes with players’ everyday experiences and practice, possibly resulting in loss of credibility, this study also concludes that gaming may function as an eye-opener to new ways of thinking. Overall, this paper suggests that the communication of (social) science and agricultural practices through serious gaming has great potential but at the same time poses challenges due to different knowledge systems and interpretive frameworks among researchers and practitioners.
  • Rummukainen, Olli; Radun, Jenni; Virtanen, Toni; Pulkki, Ville (2014)
  • Wang, Yonghong; Gao, Wenkang; Wang, Shuai; Song, Tao; Gong, Zhengyu; Ji, Dongsheng; Wang, Lili; Liu, Zirui; Tang, Guiqian; Huo, Yanfeng; Tian, Shili; Li, Jiayun; Li, Mingge; Yang, Yuan; Chu, Biwu; Petäjä, Tuukka; Kerminen, Veli-Matti; He, Hong; Hao, Jiming; Kulmala, Markku; Wang, Yuesi; Zhang, Yuanhang (2020)
    Although much attention has been paid to investigating and controlling air pollution in China, the trends of air-pollutant concentrations on a national scale have remained unclear. Here, we quantitatively investigated the variation of air pollutants in China using long-term comprehensive data sets from 2013 to 2017, during which Chinese government made major efforts to reduce anthropogenic emission in polluted regions. Our results show a significant decreasing trend in the PM2.5 concentration in heavily polluted regions of eastern China, with an annual decrease of similar to 7% compared with measurements in 2013. The measured decreased concentrations of SO2, NO2 and CO (a proxy for anthropogenic volatile organic compounds) could explain a large fraction of the decreased PM2.5 concentrations in different regions. As a consequence, the heavily polluted days decreased significantly in corresponding regions. Concentrations of organic aerosol, nitrate, sulfate, ammonium and chloride measured in urban Beijing revealed a remarkable reduction from 2013 to 2017, connecting the decreases in aerosol precursors with corresponding chemical components closely. However, surface-ozone concentrations showed increasing trends in most urban stations from 2013 to 2017, which indicates stronger photochemical pollution. The boundary-layer height in capital cities of eastern China showed no significant trends over the Beijing-Tianjin-Hebei, Yangtze River Delta and Pearl River Delta regions from 2013 to 2017, which confirmed the reduction in anthropogenic emissions. Our results demonstrated that the Chinese government was successful in the reduction of particulate matter in urban areas from 2013 to 2017, although the ozone concentration has increased significantly, suggesting a more complex mechanism of improving Chinese air quality in the future.
  • Fung, Pak Lun; Zaidan, Martha Arbayani; Surakhi, Ola; Tarkoma, Sasu; Petäjä, Tuukka; Hussein, Tareq (2021)
    In air quality research, often only size-integrated particle mass concentrations as indicators of aerosol particles are considered. However, the mass concentrations do not provide sufficient information to convey the full story of fractionated size distribution, in which the particles of different diameters (Dp) are able to deposit differently on respiratory system and cause various harm. Aerosol size distribution measurements rely on a variety of techniques to classify the aerosol size and measure the size distribution. From the raw data the ambient size distribution is determined utilising a suite of inversion algorithms. However, the inversion problem is quite often ill-posed and challenging to solve. Due to the instrumental insufficiency and inversion limitations, imputation methods for fractionated particle size distribution are of great significance to fill the missing gaps or negative values. The study at hand involves a merged particle size distribution, from a scanning mobility particle sizer (NanoSMPS) and an optical particle sizer (OPS) covering the aerosol size distributions from 0.01 to 0.42 µm (electrical mobility equivalent size) and 0.3 to 10 µm (optical equivalent size) and meteorological parameters collected at an urban background region in Amman, Jordan, in the period of 1 August 2016–31 July 2017. We develop and evaluate feed-forward neural network (FFNN) approaches to estimate number concentrations at particular size bin with (1) meteorological parameters, (2) number concentration at other size bins and (3) both of the above as input variables. Two layers with 10–15 neurons are found to be the optimal option. Worse performance is observed at the lower edge (0.01<Dp<0.02 µm), the mid-range region (0.15<Dp<0.5 µm) and the upper edge (6<Dp<10 µm). For the edges at both ends, the number of neighbouring size bins is limited, and the detection efficiency by the corresponding instruments is lower compared to the other size bins. A distinct performance drop over the overlapping mid-range region is due to the deficiency of a merging algorithm. Another plausible reason for the poorer performance for finer particles is that they are more effectively removed from the atmosphere compared to the coarser particles so that the relationships between the input variables and the small particles are more dynamic. An observable overestimation is also found in the early morning for ultrafine particles followed by a distinct underestimation before midday. In the winter, due to a possible sensor drift and interference artefacts, the estimation performance is not as good as the other seasons. The FFNN approach by meteorological parameters using 5 min data (R2= 0.22–0.58) shows poorer results than data with longer time resolution (R2= 0.66–0.77). The FFNN approach using the number concentration at the other size bins can serve as an alternative way to replace negative numbers in the size distribution raw dataset thanks to its high accuracy and reliability (R2= 0.97–1). This negative-number filling approach can maintain a symmetric distribution of errors and complement the existing ill-posed built-in algorithm in particle sizer instruments.
  • Fung, Pak L.; Zaidan, Martha A.; Timonen, Hilkka; Niemi, Jarkko V.; Kousa, Anu; Kuula, Joel; Luoma, Krista; Tarkoma, Sasu; Petäjä, Tuukka; Kulmala, Markku; Hussein, Tareq (2021)
    Air quality prediction with black-box (BB) modelling is gaining widespread interest in research and industry. This type of data-driven models work generally better in terms of accuracy but are limited to capture physical, chemical and meteorological processes and therefore accountability for interpretation. In this paper, we evaluated different white-box (WB) and BB methods that estimate atmospheric black carbon (BC) concentration by a suite of observations from the same measurement site. This study involves data in the period of 1st January 2017–31st December 2018 from two measurement sites, from a street canyon site in Mäkelänkatu and from an urban background site in Kumpula, in Helsinki, Finland. At the street canyon site, WB models performed (R² = 0.81–0.87) in a similar way as the BB models did (R² = 0.86–0.87). The overall performance of the BC concentration estimation methods at the urban background site was much worse probably because of a combination of smaller dynamic variability in the BC values and longer data gaps. However, the difference in WB (R²= 0.44–0.60) and BB models (R² = 0.41–0.64) was not significant. Furthermore, the WB models are closer to physics-based models, and it is easier to spot the relative importance of the predictor variable and determine if the model output makes sense. This feature outweighs slightly higher performance of some individual BB models, and inherently the WB models are a better choice due to their transparency in the model architecture. Among all the WB models, IAP and LASSO are recommended due to its flexibility and its efficiency, respectively. Our findings also ascertain the importance of temporal properties in statistical modelling. In the future, the developed BC estimation model could serve as a virtual sensor and complement the current air quality monitoring.
  • Jokela, Markus (2020)
    Neighborhood characteristics have been associated with psychological distress, but it is uncertain whether these associations are causal. The current article reviews data from interventions and quasi-experimental studies that have addressed the question of causality of neighborhood associations. Overall, data from neighborhood interventions, longitudinal studies, and twin studies have provided only limited and inconsistent evidence to support causal interpretation of neighborhood associations with psychological distress: very few findings have been replicated across different samples, and many associations have been observed only with some of the multiple measures included the studies. Studies that examine the effects of neighborhood change on people's wellbeing are needed to improve causal inference and policy relevance of neighborhood studies.
  • Pena-Peniche, Alexander; Mota-Vargas, Claudio; Garcia-Arroyo, Michelle; MacGregor-Fors, Ian (2021)
    Biological invasions occur when individuals of alien species establish and colonize new locations. The House Sparrow (Passer domesticus) is one of the most widespread invasive birds, native to Eurasia and North Africa, and has successfully invaded many regions from across the world. The House Sparrow was successfully introduced in 1852 into North America and quickly invaded most of the North American continent, except the Florida Peninsula. Currently, the species is found throughout agricultural and urban landscapes of North America except the Yucatan Peninsula. We analyzed the invasion process of the House Sparrow in order to determine why it is absent from the Yucatan Peninsula. For this, we focused our assessment on historical records of the species together with climatic variables. Using an ordination analysis, we compared the climatic space of the North American records for the House Sparrow with that of the Yucatan Peninsula, as well as those before and after the Florida Peninsula invasion, which took sparrows longer to fully colonize. We found that climate may represent an important driver in the process of invasion in the North American invasion of House Sparrows, probably delaying the Florida invasion, and so far, preventing the Yucatan Peninsula invasion. Our results suggest that the absence of the House Sparrow in the Yucatan Peninsula could be a temporal delay, as occurred in the Florida Peninsula; yet, climatic conditions in the Yucatan Peninsula show important differences from those of the Florida Peninsula. Given the species' plasticity and generalist life history traits, it is possible that the House Sparrow may overcome present climatic restrictions and invade the Yucatan Peninsula if proper management is not set in action.
  • Wang, Ziyu; Satka, Mirja; Julkunen, Ilse (2021)
    Building on the relational approaches, particularly social relational theory, this study investigates how Chinese adolescents plan their transition to post-compulsory education through relational influences between themselves and their parents. By examining the family and school lives of 25 Chinese adolescents from a small Chinese town, it has been found that they exercise their agency when negotiating their educational future with their parents. Their mixed agentic strategies are embedded in multiple parenting styles and they result in differing levels of agreement. Despite such variation, the adolescent-parent relationship is interpreted as the reliable interdependence across the participants. The findings provide new insights into parental influence on young Chinese people's educational future and stress the value of the relational approach in studying the family-education nexus.
  • NCD Risk Factor Collaboration; Bixby, Honor; Auvinen, Juha; Eriksson, Johan G.; Jääskeläinen, Tuija; Laatikainen, Tiina; Järvelin, Marjo-Riitta; Korpelainen, Raija; Puhakka, Soile E.; Sebert, Sylvain; Juolevi, Anne; Kajantie, Eero O.; Koskinen, Seppo; Kuulasmaa, Kari; Lundqvist, Annamari; Peltonen, Markku; Salomaa, Veikko; Tolonen, Hanna K.; Herrala, Sauli; Jokelainen, Jari; Keinänen-Kiukaanniemi, Sirkka; Mursu, Jaakko; Tuomainen, Tomi-Pekka; Virtanen, Jyrki K.; Voutilainen, Ari; Voutilainen, Sari; Kujala, Urho M.; Lehtimäki, Terho; Raitakari, Olli; Salonen, Jukka T.; Saramies, Jouko L.; Uusitalo, Hannu M. T.; Vlasoff, Tiina (2019)
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities(.)(1,2) This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity(3-6). Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017-and more than 80% in some low- and middle-income regions-was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing-and in some countries reversal-of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories.
  • Kurppa, Mona; Roldin, Pontus; Strömberg, Jani Juhani; Balling, Anna; Karttunen, Sasu; Kuuluvainen, Heino; Niemi, Jarkko V.; Pirjola, Liisa; Rönkkö, Topi; Timonen, Hilkka; Hellsten, Antti; Järvi, Leena (2020)
    High-resolution modelling is needed to understand urban air quality and pollutant dispersion in detail. Recently, the PALM model system 6.0, which is based on large-eddy simulation (LES), was extended with the detailed Sectional Aerosol module for Large Scale Applications (SALSA) v2.0 to enable studying the complex interactions between the turbulent flow field and aerosol dynamic processes. This study represents an extensive evaluation of the modelling system against the horizontal and vertical distributions of aerosol particles measured using a mobile laboratory and a drone in an urban neighbourhood in Helsinki, Finland. Specific emphasis is on the model sensitivity of aerosol particle concentrations, size distributions and chemical compositions to boundary conditions of meteorological variables and aerosol background concentrations. The meteorological boundary conditions are taken from both a numerical weather prediction model and observations, which occasionally differ strongly. Yet, the model shows good agreement with measurements (fractional bias <0.67, normalised mean squared error <6, fraction of the data within a factor of 2 > 0.3, normalised mean bias factor <0.25 and normalised mean absolute error factor <0.35) with respect to both horizontal and vertical distribution of aerosol particles, their size distribution and chemical composition. The horizontal distribution is most sensitive to the wind speed and atmospheric stratification, and vertical distribution to the wind direction. The aerosol number size distribution is mainly governed by the flow field along the main street with high traffic rates and in its surroundings by the background concentrations. The results emphasise the importance of correct meteorological and aerosol background boundary conditions, in addition to accurate emission estimates and detailed model physics, in quantitative high-resolution air pollution modelling and future urban LES studies.
  • Kontkanen, Jenni; Deng, Chenjuan; Fu, Yueyun; Dada, Lubna; Zhou, Ying; Cai, Jing; Dällenbach, Kaspar; Hakala, Simo; Kokkonen, Tom; Lin, Zhuohui; Liu, Yongchun; Wang, Yonghong; Yan, Chao; Petäjä, Tuukka; Jiang, Jingkun; Kulmala, Markku; Paasonen, Pauli (2020)
    The climate and air quality effects of aerosol particles depend on the number and size of the particles. In urban environments, a large fraction of aerosol particles originates from anthropogenic emissions. To evaluate the effects of different pollution sources on air quality, knowledge of size distributions of particle number emissions is needed. Here we introduce a novel method for determining size-resolved particle number emissions, based on measured particle size distributions. We apply our method to data measured in Beijing, China, to determine the number size distribution of emitted particles in a diameter range from 2 to 1000 nm. The observed particle number emissions are dominated by emissions of particles smaller than 30 nm. Our results suggest that traffic is the major source of particle number emissions with the highest emissions observed for particles around 10 nm during rush hours. At sizes below 6 nm, clustering of atmospheric vapors contributes to calculated emissions. The comparison between our calculated emissions and those estimated with an integrated assessment model GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) shows that our method yields clearly higher particle emissions at sizes below 60 nm, but at sizes above that the two methods agree well. Overall, our method is proven to be a useful tool for gaining new knowledge of the size distributions of particle number emissions in urban environments and for validating emission inventories and models. In the future, the method will be developed by modeling the transport of particles from different sources to obtain more accurate estimates of particle number emissions.
  • Carrillo-Larco, Rodrigo M.; Albitres-Flores, Leonardo; Barengo, Noël C.; Bernabe-Ortiz, Antonio (2019)
    Objective To synthetize the scientific evidence on the association between serum lipids and premature mortality in Latin America (LA). Methods Five data bases were searched from inception without language restrictions: Embase, Medline, Global Health, Scopus and LILACS. Population-based studies following random sampling methods were identified. The exposure variable was lipid biomarkers (e.g., total, LDL- or HDL- cholesterol). The outcome was all-cause and cause-specific mortality. The risk of bias was assessed following the Newcastle-Ottawa criteria. Results were summarized qualitatively. Results The initial search resulted in 264 abstracts, five (N = 27,903) were included for the synthesis. Three papers reported on the same study from Puerto Rico (baseline in 1965), one was from Brazil (1996) and one from Peru (2007). All reports analysed different exposure variables and used different risk estimates (relative risks, hazard ratios or odds ratios). None of the reviewed reports showed strong association between individual lipid biomarkers and all-cause or cardiovascular mortality. Conclusion The available evidence is outdated, inconsistently reported on several lipid biomarker definitions and used different methods to study the long-term mortality risk. These findings strongly support the need to better ascertain the mortality risk associated with lipid biomarkers in LA.
  • Kanerva, Anna-Maria; Hokkanen, Tatu; Lehikoinen, Aleksi; Norrdahl, Kai; Suhonen, Jukka (2020)
    Migration has evolved to tackle temporal changes in availability of resources. Climate change has been shown to affect the migration dates of species, which raises the question of whether the variation in the timing of migration is climate or resource dependent? The relative importance of temperature and availability of food as drivers of migration behaviour during both spring and autumn seasons has been poorly studied. Here, we investigated these patterns in frugivorous and granivorous birds (hereafter frugivorous) that are assumed to postpone their autumn migration when there is plenty of food available, which may also advance upcoming spring migration. On the other hand, especially spring migration dates have been negatively connected with increasing temperatures. We tested whether the autumn and spring migration dates of eleven common frugivorous birds depended on the crop size of trees or ambient temperatures using 29 years of data in Finland. The increased crop sizes of trees delayed autumn migration dates; whereas, autumn temperature did not show a significant connection. We also observed a temporal trend towards later departure. Increasing temperature and crop sizes advanced spring arrival dates. Our results support the hypothesis that the timing of autumn migration in the frugivorous birds depends on the availability of food and is weakly connected with the variation in temperature. Importantly, crop size can have carry-over effects and affect the timing of spring arrival possibly because birds have overwintered closer to the breeding grounds after an abundant crop year.
  • Parajuli, Anirudra; Grönroos, Mira; Siter, Nathan; Puhakka, Riikka; Vari, Heli K.; Roslund, Marja; Jumpponen, Ari; Nurminen, Noora; Laitinen, Olli H.; Hyöty, Heikki; Rajaniemi, Juho; Sinkkonen, Aki Tapio (2018)
    Expanding urbanization is a major factor behind rapidly declining biodiversity. It has been proposed that in urbanized societies, the rarity of contact with diverse environmental microbiota negatively impacts immune function and ultimately increases the risk for allergies and other immune-mediated disorders. Surprisingly, the basic assumption that urbanization reduces exposure to environmental microbiota and its transfer indoors has rarely been examined. We investigated if the land use type around Finnish homes affects the diversity, richness, and abundance of bacterial communities indoors. Debris deposited on standardized doormats was collected in 30 rural and 26 urban households in and near the city of Lahti, Finland, in August 2015. Debris was weighed, bacterial community composition determined by high throughput sequencing of bacterial 16S ribosomal RNA (rRNA) gene on the Illumina MiSeq platform, and the percentage of four different land use types (i.e., built area, forest, transitional, and open area) within 200 m and 2000 m radiuses from each household was characterized. The quantity of doormat debris was inversely correlated with coverage of built area. The diversity of total bacterial, Proteobacterial, Actinobacterial, Bacteroidetes, and Firmicutes communities decreased as the percentage of built area increased. Their richness followed the same pattern except for Firmicutes for which no association was observed. The relative abundance of Proteobacteria and particularly Gammaproteobacteria increased, whereas that of Actinobacteria decreased with increasing built area. Neither Phylum Firmicutes nor Bacteroidetes varied with coverage of built area. Additionally, the relative abundance of potentially pathogenic bacterial families and genera increased as the percentage of built area increased. Interestingly, having domestic animals (including pets) only altered the association between the richness of Gammaproteobacteria and diversity of Firmicutes with the built area coverage suggesting that animal ownership minimally affects transfer of environmental microbiota indoors from the living environment. These results support the hypothesis that people living in densely built areas are less exposed to diverse environmental microbiota than people living in more sparsely built areas.