Browsing by Subject "USF1"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Hoekstra, Menno; Ren, Baoyan; Laurila, Pirkka-Pekka; Hildebrand, Reeni B.; Soronen, Jarkko; Frodermann, Vanessa; Li, Zhuang; Boon, Mariette R.; Geerling, Janine J.; Rensen, Patrick C. N.; Jauhiainen, Matti; Van Eck, Miranda (2021)
    Total body upstream stimulatory factor 1 (USF1) deficiency in mice is associated with brown adipose tissue activation and a marked protection against the development of obesity and atherosclerotic lesions. Functional expression of USF1 has also been detected in monocytes and monocyte-derived macrophages. In the current study we therefore tested whether selective hematopoietic USF1 deficiency can also beneficially impact the development of atherosclerosis. For this purpose, LDL receptor knockout mice were transplanted with bone marrow from USF1 knockout mice or their wild-type littermate controls and subsequently fed a Western-type diet for 20 weeks to stimulate atherosclerotic lesion development. Strikingly, absence of USF1 function in bone marrow-derived cells was associated with exacerbated blood leukocyte (+ 100%; P < 0.01) and peritoneal leukocyte (+ 50%; P < 0.05) lipid loading and an increased atherosclerosis susceptibility (+ 31%; P < 0.05). These effects could be attributed to aggravated hyperlipidemia, i.e. higher plasma free cholesterol (+ 33%; P < 0.001) and cholesteryl esters (+ 39%; P < 0.001), and the development of hepatosteatosis. In conclusion, we have shown that hematopoietic USF1 deficiency is associated with an increased atherosclerosis susceptibility in LDL receptor knockout mice. These findings argue against a contribution of macrophage-specific USF1 deficiency to the previously described beneficial effect of total body USF1 deficiency on atherosclerosis susceptibility in mice.
  • Ruuth, Maija; Soronen, Jarkko; Kaiharju, Essi; Merikanto, Krista; Perttilä, Julia; Metso, Jari; Lee-Rueckert, Miriam; Taskinen, Marja-Riitta; Kovanen, Petri T.; Öörni, Katariina; Olkkonen, Vesa M.; Jauhiainen, Matti S.; Laurila, Pirkka-Pekka (2018)
    BackgroundThe focus of studies on high-density lipoproteins (HDL) has shifted from HDL-cholesterol (HDL-C) to HDL function. We recently demonstrated that low USF1 expression in mice and humans associates with high plasma HDL-C and low triglyceride levels, as well as protection against obesity, insulin resistance, and atherosclerosis. Here, we studied the impact of USF1 deficiency on HDL functional capacity and macrophage atherogenic functions, including inflammation, cholesterol efflux, and cholesterol accumulation.MethodsWe used a congenic Usf1 deficient mice in C57Bl/6JRccHsd background and blood samples were collected to isolate HDL for structural and functional studies. Lentiviral preparations containing the USF1 silencing shRNA expression vector were used to silence USF1 in human THP-1 and Huh-7 cells. Cholesterol efflux from acetyl-LDL loaded THP-1 macrophages was measured using HDL and plasma as acceptors. Gene expression analysis from USF1 silenced peritoneal macrophages was carried out using Affymetrix protocols.ResultsWe show that Usf1 deficiency not only increases HDL-C levels in vivo, consistent with elevated ABCA1 protein expression in hepatic cell lines, but also improves the functional capacity of HDL particles. HDL particles derived from Usf1 deficient mice remove cholesterol more efficiently from macrophages, attributed to their higher contents of phospholipids. Furthermore, silencing of USF1 in macrophages enhanced the cholesterol efflux capacity of these cells. These findings are consistent with reduced inflammatory burden of USF1 deficient macrophages, manifested by reduced secretion of pro-inflammatory cytokines MCP-1 and IL-1 and protection against inflammation-induced macrophage cholesterol accumulation in a cell-autonomous manner.ConclusionsOur findings identify USF1 as a novel factor regulating HDL functionality, showing that USF1 inactivation boosts cholesterol efflux, reduces macrophage inflammation and attenuates macrophage cholesterol accumulation, linking improved macrophage cholesterol metabolism and inflammatory pathways to the antiatherogenic function of USF1 deficiency.
  • Ruuth, Maija; Soronen, Jarkko; Kaiharju, Essi; Merikanto, Krista; Perttilä, Julia; Metso, Jari; Lee-Rueckert, Miriam; Taskinen, Marja-Riitta; Kovanen, Petri T; Öörni, Katariina; Olkkonen, Vesa M; Jauhiainen, Matti S; Laurila, Pirkka-Pekka (BioMed Central, 2018)
    Abstract Background The focus of studies on high-density lipoproteins (HDL) has shifted from HDL-cholesterol (HDL-C) to HDL function. We recently demonstrated that low USF1 expression in mice and humans associates with high plasma HDL-C and low triglyceride levels, as well as protection against obesity, insulin resistance, and atherosclerosis. Here, we studied the impact of USF1 deficiency on HDL functional capacity and macrophage atherogenic functions, including inflammation, cholesterol efflux, and cholesterol accumulation. Methods We used a congenic Usf1 deficient mice in C57Bl/6JRccHsd background and blood samples were collected to isolate HDL for structural and functional studies. Lentiviral preparations containing the USF1 silencing shRNA expression vector were used to silence USF1 in human THP-1 and Huh-7 cells. Cholesterol efflux from acetyl-LDL loaded THP-1 macrophages was measured using HDL and plasma as acceptors. Gene expression analysis from USF1 silenced peritoneal macrophages was carried out using Affymetrix protocols. Results We show that Usf1 deficiency not only increases HDL-C levels in vivo, consistent with elevated ABCA1 protein expression in hepatic cell lines, but also improves the functional capacity of HDL particles. HDL particles derived from Usf1 deficient mice remove cholesterol more efficiently from macrophages, attributed to their higher contents of phospholipids. Furthermore, silencing of USF1 in macrophages enhanced the cholesterol efflux capacity of these cells. These findings are consistent with reduced inflammatory burden of USF1 deficient macrophages, manifested by reduced secretion of pro-inflammatory cytokines MCP-1 and IL-1β and protection against inflammation-induced macrophage cholesterol accumulation in a cell-autonomous manner. Conclusions Our findings identify USF1 as a novel factor regulating HDL functionality, showing that USF1 inactivation boosts cholesterol efflux, reduces macrophage inflammation and attenuates macrophage cholesterol accumulation, linking improved macrophage cholesterol metabolism and inflammatory pathways to the antiatherogenic function of USF1 deficiency.