Browsing by Subject "VAN ALLEN PROBES"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Breneman, A. W.; Halford, A. J.; Millan, R. M.; Woodger, L. A.; Zhang, X. -J.; Sandhu, J. K.; Capannolo, L.; Li, W.; Ma, Q.; Cully, C. M.; Murphy, K. R.; Brito, T.; Elliott, S. S. (2020)
    We present observations of similar to 10-60 min solar wind dynamic pressure structures that drive large-scale coherent similar to 20-100 keV electron loss from the outer radiation belt. A combination of simultaneous satellite and Balloon Array for Radiation-belt Relativistic Electron Losses (BARREL) observations on 11-12 January 2014 shows a close association between the pressure structures and precipitation as inferred from BARREL X-rays. Specifically, the structures drive radial ExB transport of electrons up to 1 Earth radii, modulating the free electron energy available for low-frequency plasmaspheric hiss growth, and subsequent hiss-induced loss cone scattering. The dynamic pressure structures, originating near the Sun and commonly observed advecting with the solar wind, are thus able to switch on scattering loss of electrons by hiss over a large spatial scale. Our results provide a direct link between solar wind pressure fluctuations and modulation of electron loss from the outer radiation belt and may explain long-period modulations and large-scale coherence of X-rays commonly observed in the BARREL data set. Plain Language Summary The Earth's low-density magnetosphere is a region of enclosed magnetic field lines that contains energetic electrons ranging from eV to MeV energies. These populations can be greatly enhanced in response to solar driving. Following enhancements, energetic electron populations are depleted on timescales of hours to days by various processes. One important depletion process occurs when an electromagnetic plasma wave called plasmaspheric hiss, which exists within a high plasma density region called the plasmasphere and its (occasional) radial extension called the plume, scatters energetic electrons into the atmosphere. In this paper, we show that these hiss waves can be switched on by compressions of the magnetosphere which occur in response to similar to 1 hr long pressure structures in the solar wind. These structures originate at or near the Sun and are very common in the solar wind at 1 AU. The newly excited hiss waves scatter electrons into the atmosphere where they are observed on balloon-borne X-ray detectors. Our results suggest that magnetospheric models that predict the loss of electrons from hiss waves may be improved by consideration of solar wind pressure-driven dynamics.
  • Eastwood, J. P.; Nakamura, R.; Turc, L.; Mejnertsen, L.; Hesse, M. (2017)
    The magnetosphere is the lens through which solar space weather phenomena are focused and directed towards the Earth. In particular, the non-linear interaction of the solar wind with the Earth's magnetic field leads to the formation of highly inhomogenous electrical currents in the ionosphere which can ultimately result in damage to and problems with the operation of power distribution networks. Since electric power is the fundamental cornerstone of modern life, the interruption of power is the primary pathway by which space weather has impact on human activity and technology. Consequently, in the context of space weather, it is the ability to predict geomagnetic activity that is of key importance. This is usually stated in terms of geomagnetic storms, but we argue that in fact it is the substorm phenomenon which contains the crucial physics, and therefore prediction of substorm occurrence, severity and duration, either within the context of a longer-lasting geomagnetic storm, but potentially also as an isolated event, is of critical importance. Here we review the physics of the magnetosphere in the frame of space weather forecasting, focusing on recent results, current understanding, and an assessment of probable future developments.