Browsing by Subject "VAPOR-PRESSURES"

Sort by: Order: Results:

Now showing items 1-10 of 10
  • Mohr, Claudia; Lopez-Hilfiker, Felipe D.; Yli-Juuti, Taina; Heitto, Arto; Lutz, Anna; Hallquist, Mattias; D'Ambro, Emma L.; Rissanen, Matti P.; Hao, Liqing; Schobesberger, Siegfried; Kulmala, Markku; Mauldin III, Roy L.; Makkonen, Ulla; Sipilä, Mikko; Petäjä, Tuukka; Thornton, Joel A. (2017)
    We present ambient observations of dimeric monoterpene oxidation products (C16-20HyO6-9) in gas and particle phases in the boreal forest in Finland in spring 2013 and 2014, detected with a chemical ionization mass spectrometer with a filter inlet for gases and aerosols employing acetate and iodide as reagent ions. These are among the first online dual-phase observations of such dimers in the atmosphere. Estimated saturation concentrations of 10(-15) to 10(-6)mu gm(-3) (based on observed thermal desorptions and group-contribution methods) and measured gas-phase concentrations of 10(-3) to 10(-2)mu gm(-3) (similar to 10(6)-10(7)moleculescm(-3)) corroborate a gas-phase formation mechanism. Regular new particle formation (NPF) events allowed insights into the potential role dimers may play for atmospheric NPF and growth. The observationally constrained Model for Acid-Base chemistry in NAnoparticle Growth indicates a contribution of similar to 5% to early stage particle growth from the similar to 60 gaseous dimer compounds. Plain Language Summary Atmospheric aerosol particles influence climate and air quality. We present new insights into how emissions of volatile organic compounds from trees are transformed in the atmosphere to contribute to the formation and growth of aerosol particles. We detected for the first time over a forest, a group of organic molecules, known to grow particles, in the gas phase at levels far higher than expected. Previous measurements had only measured them in the particles. This finding provides guidance on how models of aerosol formation and growth should describe their appearance and fate in the atmosphere.
  • Häkkinen, Silja A. K.; McNeill, V. Faye; Riipinen, Ilona (2014)
  • Elm, Jonas; Myllys, Nanna; Olenius, Tinja; Halonen, Roope; Kurten, Theo; Vehkamäki, Hanna (2017)
    Using computational methods, we investigate the formation of atmospheric clusters consisting of sulfuric acid (SA) and 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), identified from a-pinene oxidation. The molecular structure of the clusters is obtained using three different DFT functionals (PW91, M06-2X and oB97X-D) with the 6-31++ G(d, p) basis set and the binding energies are calculated using a high level DLPNO-CCSD(T)/ Def2-QZVPP method. The stability of the clusters is evaluated based on the calculated formation free energies. The interaction between MBTCA and sulfuric acid is found to be thermodynamically favourable and clusters consisting of 2-3 MBTCA and 2-3 SA molecules are found to be particularly stable. There is a large stabilization of the cluster when the amount of sulfuric acid-carboxylic acid hydrogen bonded interactions is maximized. The reaction free energies for forming the (MBTCA) 2-3(SA) 2-3 clusters are found to be similar in magnitude to those of the formation of the sulfuric acid-dimethylamine cluster. Using cluster kinetics calculations we identify that the growth of the clusters is essentially limited by a weak formation of the largest clusters studied, implying that other stabilizing vapours are required for stable cluster formation and growth.
  • Draper, Danielle C.; Myllys, Nanna; Hyttinen, Noora; Moller, Kristian H.; Kjaergaard, Henrik G.; Fry, Juliane L.; Smith, James N.; Kurten, Theo (2019)
    NO3 radical oxidation of most monoterpenes is a significant source of secondary organic aerosol (SOA) in many regions influenced by both biogenic and anthropogenic emissions, but there are very few published mechanistic studies of NO3 chemistry beyond simple first generation products. Here, we present a computationally derived mechanism detailing the unimolecular pathways available to the second generation of peroxy radicals following NO3 oxidation of Delta-3-carene, defining generations based on the sequence of peroxy radicals formed rather than number of oxidant attacks. We assess five different types of unimolecular reactions, including peroxy and alkoxy radical (RO2 and RO) hydrogen shifts, RO2 and RO ring closing (e.g., endoperoxide formation), and RO decomposition. Rate constants calculated using quantum chemical methods indicate that this chemical system has significant contribution from both bimolecular and unimolecular pathways. The dominant unimolecular reactions are endoperoxide formation, RO H-shifts, and RO decomposition. However, the complexity of the overall reaction is tempered as only 1 or 2 radical propagation pathways dominate the fate of each radical intermediate. Chemical ionization mass spectrometry (CIMS) measurements using the NO3- reagent ion during Delta-3-carene + NO3 chamber experiments show products consistent with each of the three types of unimolecular reactions predicted to be important from the computational mechanism. Moreover, the SIMPOL group contribution method for predicting vapor pressures suggests that a majority of the closed-shell products inferred from these unimolecular reactions are likely to have low enough vapor pressure to be able to contribute to SOA formation.
  • Rissanen, Matti P. (2018)
    Atmospheric autoxidation of volatile organic compounds (VOC) leads to prompt formation of highly oxidized multifunctional compounds (HOM) that have been found crucial in forming ambient secondary organic aerosol (SOA). As a radical chain reaction mediated by oxidized peroxy (RO2) and alkoxy (RO) radical intermediates, the formation pathways can be intercepted by suitable reaction partners, preventing the production of the highest oxidized reaction products, and thus the formation of the most condensable material. Commonly, NO is expected to have a detrimental effect on RO2 chemistry, and thus on autoxidation, whereas the influence of NO2 is mostly neglected. Here it is shown by dedicated flow tube experiments, how high concentration of NO2 suppresses cyclohexene ozonolysis initiated autoxidation chain reaction. Importantly, the addition of NO2 ceases covalently bound dimer production, indicating their production involving acylperoxy radical (RC(O)OO•) intermediates. In related experiments NO was also shown to strongly suppress the highly oxidized product formation, but due to possibility for chain propagating reactions (as with RO2 and HO2 too), the suppression is not as absolute as with NO2. Furthermore, it is shown how NOx reactions with oxidized peroxy radicals lead into indistinguishable product compositions, complicating mass spectral assignments in any RO2 + NOx system. The present work was conducted with atmospheric pressure chemical ionization mass spectrometry (CIMS) as the detection method for the highly oxidized end-products and peroxy radical intermediates, under ambient conditions and at short few second reaction times. Specifically, the insight was gained by addition of a large amount of NO2 (and NO) to the oxidation system, upon which acylperoxy radicals reacted in RC(O)O2 + NO2 → RC(O)O2NO2 reaction to form peroxyacylnitrates, consequently shutting down the oxidation sequence. Keywords: acylperoxy radicals; Autoxidation; dimers; Highly oxidized multifunctional compounds; Highly oxygenated molecules; HOM; nitrogen oxides; peroxyacylnitrate
  • Michailoudi, Georgia; Hyttinen, Noora; Kurten, Theo; Prisle, Nonne L. (2020)
    Fatty acids (CH3(CH2)(n-2)COOH) and their salts are an important class of atmospheric surfactants. Here, we use COSMOtherm to predict solubility and activity coefficients for C-2-C-12 fatty acids with even number of carbon atoms and their sodium salts in binary water solutions and also in ternary water-inorganic salt solutions. COSMOtherm is a continuum solvent model implementation which can calculate properties of complex systems using quantum chemistry and thermodynamics. Calculated solubility values of the organic acids in pure water are in good agreement with reported experimental values. The comparison of the COSMOtherm-derived Setschenow constants for ternary solutions comprising NaCl with the corresponding experimental values from the literature shows that COSMOtherm overpredicts the salting out effect in all cases except for the solutions of acetic acid. The calculated activity and mean activity coefficients of fatty acids and fatty acid sodium salts, respectively, show deviation of the systems from ideal solution. The computed mean activity coefficients of the fatty acid salts in binary systems are in better agreement with experimentally derived values for the organic salts with longer aliphatic chain (C-8-C-10). The deviation of the solutions from ideality could lead to biased estimations of cloud condensation nuclei number concentrations if not considered in Kohler calculations and cloud microphysics.
  • Elm, Jonas; Hyttinen, Noora; Lin, Jack J.; Kurten, Theo; Prisle, Nonne L. (2019)
    The physical properties of small straight-chain dicarboxylic acids are well known to exhibit even/odd alternations with respect to the carbon chain length. For example, odd numbered diacids have lower melting points and higher saturation vapor pressures than adjacent even numbered diacids. This alternation has previously been explained in terms of solid-state properties, such as higher torsional strain of odd number diacids. Using quantum chemical methods, we demonstrate an additional contribution to this alternation in properties resulting from gas-phase dimer formation. Due to a combination of hydrogen bond strength and torsional strain, dimer formation in the gas phase occurs efficiently for glutaric acid (CS) and pimelic acid (C7) but is unfavorable for succinic acid (C4) and adipic acid (C6). Our results indicate that a significant fraction of the total atmospheric gas-phase concentration of glutaric and pimelic acid may consist of dimers.
  • Hyttinen, Noora; Heshmatnezhad, Reyhaneh; Elm, Jonas; Kurten, Theo; Prisle, Nonne L. (2020)
    We have used the COSMOtherm program to estimate activity coefficients and solubilities of mono- and alpha, omega-dicarboxylic acids and water in binary acid-water systems. The deviation from ideality was found to be larger in the systems containing larger acids than in the systems containing smaller acids. COnductor-like Screening MOdel for Real Solvents (COSMO-RS) underestimates experimental monocarboxylic acid activity coefficients by less than a factor of 2, but experimental water activity coefficients are underestimated more especially at high acid mole fractions. We found a better agreement between COSMOtherm-estimated and experimental activity coefficients of monocarboxylic acids when the water clustering with a carboxylic acid and itself was taken into account using the dimerization, aggregation, and reaction extension (COSMO-RS-DARE) of COSMOtherm. COSMO-RS-DARE is not fully predictive, but fit parameters found here for water-water and acid-water clustering interactions can be used to estimate thermodynamic properties of monocarboxylic acids in other aqueous solvents, such as salt solutions. For the dicarboxylic acids, COSMO-RS is sufficient for predicting aqueous solubility and activity coefficients, and no fitting to experimental values is needed. This is highly beneficial for applications to atmospheric systems, as these data are typically not available for a wide range of mixing states realized in the atmosphere, due to a lack of either feasibility of the experiments or sample availability. Based on effective equilibrium constants of different clustering reactions in the binary solutions, acid dimer formation is more dominant in systems containing larger dicarboxylic acids (C-5-C-8), while for monocarboxylic acids (C-1-C-6) and smaller dicarboxylic acids (C-2-C-4), hydrate formation is more favorable, especially in dilute solutions.