Browsing by Subject "VARIABILITY"

Sort by: Order: Results:

Now showing items 1-20 of 95
  • Sahlin, Ullrika; Helle, Inari; Perepolkin, Dmytro (2021)
    Failing to communicate current knowledge limitations, that is, epistemic uncertainty, in environmental risk assessment (ERA) may have severe consequences for decision making. Bayesian networks (BNs) have gained popularity in ERA, primarily because they can combine variables from different models and integrate data and expert judgment. This paper highlights potential gaps in the treatment of uncertainty when using BNs for ERA and proposes a consistent framework (and a set of methods) for treating epistemic uncertainty to help close these gaps. The proposed framework describes the treatment of epistemic uncertainty about the model structure, parameters, expert judgment, data, management scenarios, and the assessment's output. We identify issues related to the differentiation between aleatory and epistemic uncertainty and the importance of communicating both uncertainties associated with the assessment predictions (direct uncertainty) and the strength of knowledge supporting the assessment (indirect uncertainty). Probabilities, intervals, or scenarios are expressions of direct epistemic uncertainty. The type of BN determines the treatment of parameter uncertainty: epistemic, aleatory, or predictive. Epistemic BNs are useful for probabilistic reasoning about states of the world in light of evidence. Aleatory BNs are the most relevant for ERA, but they are not sufficient to treat epistemic uncertainty alone because they do not explicitly express parameter uncertainty. For uncertainty analysis, we recommend embedding an aleatory BN into a model for parameter uncertainty. Bayesian networks do not contain information about uncertainty in the model structure, which requires several models. Statistical models (e.g., hierarchical modeling outside the BNs) are required to consider uncertainties and variability associated with data. We highlight the importance of being open about things one does not know and carefully choosing a method to precisely communicate both direct and indirect uncertainty in ERA. Integr Environ Assess Manag 2020;00:1-12. (c) 2020 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC)
  • Reichenau, Tim G.; Korres, Wolfgang; Schmidt, Marius; Graf, Alexander; Welp, Gerhard; Meyer, Nele; Stadler, Anja; Brogi, Cosimo; Schneider, Karl (2020)
    The development and validation of hydroecological land-surface models to simulate agricultural areas require extensive data on weather, soil properties, agricultural management, and vegetation states and fluxes. However, these comprehensive data are rarely available since measurement, quality control, documentation, and compilation of the different data types are costly in terms of time and money. Here, we present a comprehensive dataset, which was collected at four agricultural sites within the Rur catchment in western Germany in the framework of the Transregional Collaborative Research Centre 32 (TR32) "Patterns in Soil-Vegetation-Atmosphere Systems: Monitoring, Modeling and Data Assimilation". Vegetation-related data comprise fresh and dry biomass (green and brown, predominantly per organ), plant height, green and brown leaf area index, phenological development state, nitrogen and carbon content (overall > 17 000 entries), and masses of harvest residues and regrowth of vegetation after harvest or before planting of the main crop (> 250 entries). Vegetation data including LAI were collected in frequencies of 1 to 3 weeks in the years 2015 until 2017, mostly during overflights of the Sentinel 1 and Radarsat 2 satellites. In addition, fluxes of carbon, energy, and water (> 180 000 half-hourly records) measured using the eddy covariance technique are included. Three flux time series have simultaneous data from two different heights. Data on agricultural management include sowing and harvest dates as well as information on cultivation, fertilization, and agrochemicals (27 management periods). The dataset also includes gap-filled weather data (> 200 000 hourly records) and soil parameters (particle size distributions, carbon and nitrogen content; > 800 records). These data can also be useful for development and validation of remote-sensing products. The dataset is hosted at the TR32 database (, last access: 29 September 2020) and has the DOI (Reichenau et al., 2020).
  • Valtonen, Mauri J.; Zola, Staszek; Pihajoki, Pauli; Enestam, Sissi; Lehto, Harry J.; Dey, Lankeswar; Gopakumar, Achamveedu; Drozdz, Marek; Ogloza, Waldemar; Zejmos, Michal; Gupta, Alok C.; Pursimo, Tapio; Ciprini, Stefano; Kidger, Mark; Nilsson, Kari; Berdyugin, Andrei; Piirola, Vilppu; Jermak, Helen; Hudec, Rene; Laine, Seppo (2019)
    In the binary black hole model of OJ. 287, the secondary black hole orbits a much more massive primary, and impacts on the primary accretion disk at predictable times. We update the parameters of the disk, the viscosity, alpha, and the mass accretion rate, . We find alpha = 0.26 +/- 0.1 and = 0.08 +/- 0.04 in Eddington units. The former value is consistent with Coroniti, and the latter with Marscher & Jorstad. Predictions are made for the 2019 July 30 superflare in OJ. 287. We expect that it will take place simultaneously at the Spitzer infrared channels, as well as in the optical, and that therefore the timing of the flare in optical can be accurately determined from Spitzer observations. We also discuss in detail the light curve of the 2015 flare, and find that the radiating volume has regions where bremsstrahlung dominates, as well as regions that radiate primarily in synchrotron radiation. The former region produces the unpolarized first flare, while the latter region gives rise to a highly polarized second flare.
  • Morgan, Eric J.; Lavric, Jost V.; Arevalo-Martinez, Damian L.; Bange, Hermann W.; Steinhoff, Tobias; Seifert, Thomas; Heimann, Martin (2019)
    Ground-based atmospheric observations of CO2, delta(O-2/N-2), N2O, and CH4 were used to make estimates of the air-sea fluxes of these species from the Luderitz and Walvis Bay upwelling cells in the northern Benguela region, during upwelling events. Average flux densities (+/- 1 sigma) were 0:65 +/- 0:4 mu mol m(-2) s(-1) for CO2, -5.1 +/- 2:5 mu mol m(-2) s(-1) for O-2 (as APO), 0:61 +/- 0:5 nmol m(-2) s(-1) for N2O, and 4:8 +/- 6:3 nmol m(-2)s(-1) for CH4. A comparison of our top-down (i.e., inferred from atmospheric anomalies) flux estimates with shipboard-based measurements showed that the two approaches agreed within +/- 55% on average, though the degree of agreement varied by species and was best for CO2. Since the top-down method overestimated the flux density relative to the shipboard-based approach for all species, we also present flux density estimates that have been tuned to best match the shipboard fluxes. During the study, upwelling events were sources of CO2, N2O, and CH4 to the atmosphere. N2O fluxes were fairly low, in accordance with previous work suggesting that the evasion of this gas from the Benguela is smaller than for other eastern boundary upwelling systems (EBUS). Conversely, CH4 release was quite high for the marine environment, a result that supports studies that indicated a large sedimentary source of CH4 in the Walvis Bay area. These results demonstrate the suitability of atmospheric time series for characterizing the temporal variability of upwelling events and their influence on the overall marine greenhouse gas (GHG) emissions from the northern Benguela region.
  • Fiedler, Stephanie; Kinne, Stefan; Huang, Wan Ting Katty; Räisänen, Petri; O'Donnell, Declan; Bellouin, Nicolas; Stier, Philip; Merikanto, Joonas; van Noije, Twan; Makkonen, Risto; Lohmann, Ulrike (2019)
    This study assesses the change in anthropogenic aerosol forcing from the mid-1970s to the mid-2000s. Both decades had similar global-mean anthropogenic aerosol optical depths but substantially different global distributions. For both years, we quantify (i) the forcing spread due to model-internal variability and (ii) the forcing spread among models. Our assessment is based on new ensembles of atmosphere-only simulations with five state-of-the-art Earth system models. Four of these models will be used in the sixth Coupled Model Intercomparison Project (CMIP6; Eyring et al., 2016). Here, the complexity of the anthropogenic aerosol has been reduced in the participating models. In all our simulations, we prescribe the same patterns of the anthropogenic aerosol optical properties and associated effects on the cloud droplet number concentration. We calculate the instantaneous radiative forcing (RF) and the effective radiative forcing (ERF). Their difference defines the net contribution from rapid adjustments. Our simulations show a model spread in ERF from -0.4 to -0.9 W m(-2). The standard deviation in annual ERF is 0.3 W m(-2), based on 180 individual estimates from each participating model. This result implies that identifying the model spread in ERF due to systematic differences requires averaging over a sufficiently large number of years. Moreover, we find almost identical ERFs for the mid-1970s and mid-2000s for individual models, although there are major model differences in natural aerosols and clouds. The model-ensemble mean ERF is -0.54 W m(-2) for the pre-industrial era to the mid-1970s and -0.59 W m(-2) for the pre-industrial era to the mid-2000s. Our result suggests that comparing ERF changes between two observable periods rather than absolute magnitudes relative to a poorly constrained pre-industrial state might provide a better test for a model's ability to represent transient climate changes.
  • Haavisto, Noora; Tuomi, Laura; Roiha, Petra; Siiria, Simo-Matti; Alenius, Pekka; Purokoski, Tero (2018)
    We made an assessment of the hydrography in the Bothnian Sea based on data collected by the Argo floats during the first 6 years of operation in the Bothnian Sea (2012-2017). We evaluated the added value of Argo data related to the pre-existing monitoring data. The optimal usage and profiling frequency of Argo floats was also evaluated and the horizontal and vertical coverage of the profiles were assessed. For now we lose 4 m of data from the surface due to sensor design and some meters from the bottom because of the low resolution of available bathymetry data that is used to avoid bottom collisions. Mean monthly temperature and salinity close to surface and below halocline from the float data were within the boundaries given in literature, although some variation was lost due to scarcity of winter profiles. The temporal coverage of the Argo data is much better than that of ship monitoring, but some spatial variability is lost since the floats are confined in the over 100 m deep area of the Bothnian Sea. The possibility to adjust the float profiling frequency according to weather forecasts was successfully demonstrated and found a feasible way to get measurements from storms and other short term phenomena unreachable with research vessels. First 6 years of operation have shown that Argo floats can be successfully operated in the challenging conditions of the Bothnian Sea and they are shown to be an excellent addition to the monitoring network there. With multiple floats spread in the basin we can increase our general knowledge of the hydrographic conditions and occasionally get interesting data related to intrusions and mixing during high wind events and other synoptic scale events.
  • Hartikainen, Saara M.; Jach, Agnieszka; Grane, Aurea; Robson, Thomas Matthew (2018)
  • Jonassen, Marius; Välisuo, Ilona; Vihma, Timo; Uotila, Petteri; Makshtas, Alexander; Launiainen, Jouko (2019)
    Surface layer and upper-air in situ observations from two research vessel cruises and an ice station in the Weddell Sea from 1992 and 1996 are used to validate four current atmospheric reanalysis products: ERA-Interim, CFSR, JRA-55, and MERRA-2. Three of the observation data sets were not available for assimilation, providing a rare opportunity to validate the reanalyses in the otherwise datasparse region of the Antarctic against independent data. All four reanalyses produce 2 m temperatures warmer than the observations, and the biases vary from +2.0 K in CFSR to +2.8 K in MERRA-2. All four reanalyses are generally too warm also higher up in the atmospheric boundary layer (ABL), with biases up to +1.4 K (ERA-Interim). Cloud fractions are relatively poorly reproduced by the reanalyses, MERRA-2 and JRA-55 having the strongest positive and negative biases of about +30 % and -17 %, respectively. Skill scores of the error statistics reveal that ERA-Interim compares generally the most favorably against both the surface layer and the upper-air observations. CFSR compares the second best and JRA-55 and MERRA-2 have the least favorable scores. The ABL warm bias is consistent with previous evaluation studies in high latitudes, where more recent observations have been applied. As the amount of observations has varied depending on the decade, season, and region, the consistency of the warm bias suggests a need to improve the modeling systems, including data assimilation as well as ABL and surface parameterizations.
  • Koulaouzidis, Anastasios; Sipponen, Taina; Nemeth, Artur; Makins, Richard; Kopylov, Uri; Nadler, Moshe; Giannakou, Andry; Yung, Diana E.; Johansson, Gabriele Wurm; Bartzis, Leonidas; Thorlacius, Henrik; Seidman, Ernest G.; Eliakim, Rami; Plevris, John N.; Toth, Ervin (2016)
    Accurate inflammation reporting in capsule endoscopy (CE) is important for diagnosis and monitoring of treatment of inflammatory bowel disease (IBD). Fecal calprotectin (FC) is a highly specific biomarker of gut inflammation. Lewis score (LS) was developed to standardize quantification of inflammation in small-bowel (SB) CE images. Multicenter retrospective study aiming to investigate correlation between LS and FC in a large group of patients undergoing CE for suspected or known small-bowel IBD, and to develop a model for prediction of CE results (LS) based on FC levels. Five academic centers and a district general hospital offering CE in UK, Finland, Sweden, Canada, and Israel. In total, 333 patients were recruited. They had small-bowel CE and FC done within 3 months. Overall, correlation between FC and LS was weak (r (s): 0.232, P <0.001). When two clinically significant FC thresholds (100 and 250 mu g/g) were examined, the r (s) between FC and LS was 0.247 (weak) and 0.337 (moderate), respectively (P = 0.307). For clinically significant (LS a parts per thousand yen 135) or negative (LS <135) for SB inflammation, ROC curves gave an optimum cutoff point of FC 76 mu g/g with sensitivity 0.59 and specificity 0.41. Limitations: Retrospective design. LS appears to show low correlation with FC as well as other serology markers of inflammation. FC does not appear to be a reliable biomarker for significant small-bowel inflammation. Nevertheless, FC level a parts per thousand yen 76 mu g/g may be associated with appreciable visual inflammation on small-bowel CE in patients with negative prior diagnostic workup.
  • Tervo, Aino E.; Metsomaa, Johanna; Nieminen, Jaakko O.; Sarvas, Jukka; Ilmoniemi, Risto J. (2020)
    Transcranial magnetic stimulation (TMS) protocols often include a manual search of an optimal location and orientation of the coil or peak stimulating electric field to elicit motor responses in a target muscle. This target search is laborious, and the result is user-dependent. Here, we present a closed-loop search method that utilizes automatic electronic adjustment of the stimulation based on the previous responses. The electronic adjustment is achieved by multi-locus TMS, and the adaptive guiding of the stimulation is based on the principles of Bayesian optimization to minimize the number of stimuli (and time) needed in the search. We compared our target-search method with other methods, such as systematic sampling in a predefined cortical grid. Validation experiments on five healthy volunteers and further offline simulations showed that our adaptively guided search method needs only a relatively small number of stimuli to provide outcomes with good accuracy and precision. The automated method enables fast and user-independent optimization of stimulation parameters in research and clinical applications of TMS.
  • Wiedensohler, A.; Andrade, M.; Weinhold, K.; Müller, T.; Birmili, W.; Velarde, F.; Moreno, Adam; Forno, R.; Sanchez, M. F.; Laj, P.; Ginot, P.; Whiteman, D. N.; Krejci, R.; Sellegri, K.; Reichler, T. (2018)
    Urban development, growing industrialization, and increasing demand for mobility have led to elevated levels of air pollution in many large cities in Latin America, where air quality standards and WHO guidelines are frequently exceeded. The conurbation of the metropolitan area of La Paz/El Alto is one of the fastest growing urban settlements in South America with the particularity of being located in a very complex terrain at a high altitude. As many large cities or metropolitan areas, the metropolitan area of La Paz/El Alto and the Altiplano region are facing air quality deterioration. Long-term measurement data of the equivalent black carbon (eBC) mass concentrations and particle number size distributions (PNSD) from the Global Atmosphere Watch Observatory Chacaltaya (CHC; 5240 m a.s.l., above sea level) indicated a systematic transport of particle matter from the metropolitan area of La Paz/El Alto to this high altitude station and subsequently to the lower free troposphere. To better understand the sources and the transport mechanisms, we conducted eBC and PNSDs measurements during an intensive campaign at two locations in the urban area of La Paz/El Alto from September to November 2012. While the airport of El Alto site (4040 m a.s.l.) can be seen as representative of the urban and Altiplano background, the road site located in Central La Paz (3590 m a.s.l.) is representative for heavy traffic-dominated conditions. Peaks of eBC mass concentrations up to 5 mu g m(-3) were observed at the El Alto background site in the early morning and evening, while minimum values were detected in the early afternoon, mainly due to thermal convection and change of the planetary boundary layer height. The traffic-related eBC mass concentrations at the road site reached maximum values of 10-20 mu g m(-3). A complete traffic ban on the specific Bolivian Day of Census (November 21, 2012) led to a decrease of eBC below 1 mu g m(-3) at the road site for the entire day. Compared to the day before and after, particle number concentrations decreased by a factor between 5 and 25 over the particle size range from 10 to 800 nm, while the submicrometer particle mass concentration dropped by approximately 80%. These results indicate that traffic is the dominating source of BC and particulate air pollution in the metropolitan area of La Paz/El Alto. In general, the diurnal cycle of eBC mass concentration at the Chacaltaya observatory is anti-correlated to the observations at the El Alto background site. This pattern indicates that the traffic-related particulate matter, including BC, is transported to higher altitudes with the developing of the boundary layer during daytime. The metropolitan area of La Paz/El Alto seems to be a significant source for BC of the regional lower free troposphere. From there, BC can be transported over long distances and exert impact on climate and composition of remote southern hemisphere.
  • CENTER-TBI Investigators; van Veen, Ernest; van der Jagt, Mathieu; Cnossen, Maryse C.; Maas, Andrew I. R.; de Beaufort, Inez D.; Menon, David K.; Citerio, Giuseppe; Stocchetti, Nino; Rietdijk, Wim J. R.; van Dijck, Jeroen T. J. M.; Kompanje, Erwin J. O.; Raj, Rahul (2018)
    BackgroundWe aimed to investigate the extent of the agreement on practices around brain death and postmortem organ donation.MethodsInvestigators from 67 Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study centers completed several questionnaires (response rate: 99%).ResultsRegarding practices around brain death, we found agreement on the clinical evaluation (prerequisites and neurological assessment) for brain death determination (BDD) in 100% of the centers. However, ancillary tests were required for BDD in 64% of the centers. BDD for nondonor patients was deemed mandatory in 18% of the centers before withdrawing life-sustaining measures (LSM). Also, practices around postmortem organ donation varied. Organ donation after circulatory arrest was forbidden in 45% of the centers. When withdrawal of LSM was contemplated, in 67% of centers the patients with a ventricular drain in situ had this removed, either sometimes or all of the time.ConclusionsThis study showed both agreement and some regional differences regarding practices around brain death and postmortem organ donation. We hope our results help quantify and understand potential differences, and provide impetus for current dialogs toward further harmonization of practices around brain death and postmortem organ donation.
  • de Moura, Yhasmin Mendes; Balzter, Heiko; Galvão, Lênio S.; Dalagnol, Ricardo; Espírito-Santo, Fernando; Santos, Erone G.; Garcia, Mariano; Bispo, Polyanna Da Conceição; Oliveira, Raimundo C.; Shimabukuro, Yosio E. (2020)
    Tropical forests hold significant amounts of carbon and play a critical role on Earth ' s climate system. To date, carbon dynamics over tropical forests have been poorly assessed, especially over vast areas of the tropics that have been affected by some type of disturbance (e.g., selective logging, understory fires, and fragmentation). Understanding the multi-temporal dynamics of carbon stocks over human-modified tropical forests (HMTF) is crucial to close the carbon cycle balance in the tropics. Here, we used multi-temporal and high-spatial resolution airborne LiDAR data to quantify rates of carbon dynamics over a large patch of HMTF in eastern Amazon, Brazil. We described a robust approach to monitor changes in aboveground forest carbon stocks between 2012 and 2018. Our results showed that this particular HMTF lost 0.57 myr(-1) in mean forest canopy height and 1.38 MgCha(-1)yr(-1) of forest carbon between 2012 and 2018. LiDAR-based estimates of Aboveground Carbon Density (ACD) showed progressive loss through the years, from 77.9 MgCha(-1) in 2012 to 53.1 MgCha(-1) in 2018, thus a decrease of 31.8%. Rates of carbon stock changes were negative for all time intervals analyzed, yielding average annual carbon loss rates of -1.34 MgCha(-1)yr(-1). This suggests that this HMTF is acting more as a source of carbon than a sink, having great negative implications for carbon emission scenarios in tropical forests. Although more studies of forest dynamics in HMTFs are necessary to reduce the current remaining uncertainties in the carbon cycle, our results highlight the persistent effects of carbon losses for the study area. HMTFs are likely to expand across the Amazon in the near future. The resultant carbon source conditions, directly associated with disturbances, may be essential when considering climate projections and carbon accounting methods.
  • Peltomaa, Elina; Ojala, Anne; Holopainen, Anna-Liisa; Salonen, Kalevi (2013)
  • Pöysa, Hannu; Vaananen, Veli-Matti (2018)
    The proportion of first-year birds in annual wing samples provided by hunters has been used as a measure of breeding success in waterfowl. The proportion of first-year birds in the wing samples of Eurasian wigeon (Mareca penelope) from Denmark and the UK shows a long-term decline, probably reflecting a decrease in breeding success. However, previous studies report conflicting results in the relationship between variation in the proportion of first-year birds and variation in climatic conditions. We used wing data of hunter-shot Eurasian wigeon from Finland to study whether the proportion of first-year birds shows a similar long-term decline and whether between-year variation in the proportion of young is associated with variation in climatic conditions. We found a long-term decline in the proportion of first-year birds. The proportion of young also varied considerably between years, but this variation was not associated with weather or the climatic variables considered for the breeding and wintering periods. More research is needed concerning factors that affect long-term changes and annual variation in the proportion of young in the hunting bag and on the suitability of this index to measure productivity in ducks.
  • Lietzen, Niina; Cheng, Lu; Moulder, Robert; Siljander, Heli; Laajala, Essi; Härkönen, Taina; Peet, Aleksandr; Vehtari, Aki; Tillmann, Vallo; Knip, Mikael; Lahdesmaki, Harri; Lahesmaa, Riitta (2018)
    Children develop rapidly during the first years of life, and understanding the sources and associated levels of variation in the serum proteome is important when using serum proteins as markers for childhood diseases. The aim of this study was to establish a reference model for the evolution of a healthy serum proteome during early childhood. Label-free quantitative proteomics analyses were performed for 103 longitudinal serum samples collected from 15 children at birth and between the ages of 3-36 months. A flexible Gaussian process-based probabilistic modelling framework was developed to evaluate the effects of different variables, including age, living environment and individual variation, on the longitudinal expression profiles of 266 reliably identified and quantified serum proteins. Age was the most dominant factor influencing approximately half of the studied proteins, and the most prominent age-associated changes were observed already during the first year of life. High inter-individual variability was also observed for multiple proteins. These data provide important details on the maturing serum proteome during early life, and evaluate how patterns detected in cord blood are conserved in the first years of life. Additionally, our novel modelling approach provides a statistical framework to detect associations between covariates and non-linear time series data.
  • Tukiainen, Taru; Pirinen, Matti; Sarin, Antti-Pekka; Ladenvall, Claes; Kettunen, Johannes; Lehtimaeki, Terho; Lokki, Marja-Liisa; Perola, Markus; Sinisalo, Juha; Vlachopoulou, Efthymia; Eriksson, Johan G.; Groop, Leif; Jula, Antti; Jaervelin, Marjo-Riitta; Raitakari, Olli T.; Salomaa, Veikko; Ripatti, Samuli (2014)
  • Karjalainen, Olli; Aalto, Juha; Luoto, Miska; Westermann, Sebastian; Romanovsky, Vladimir E.; Nelson, Frederick E.; Etzelmueller, Bernd; Hjort, Jan (2019)
    Ongoing climate change is causing fundamental changes in the Arctic, some of which can be hazardous to nature and human activity. In the context of Earth surface systems, warming climate may lead to rising ground temperatures and thaw of permafrost. This Data Descriptor presents circumpolar permafrost maps and geohazard indices depicting zones of varying potential for development of hazards related to near-surface permafrost degradation, such as ground subsidence. Statistical models were used to predict ground temperature and the thickness of the seasonally thawed (active) layer using geospatial data on environmental conditions at 30 arc-second resolution. These predictions, together with data on factors (ground ice content, soil grain size and slope gradient) affecting permafrost stability, were used to formulate geohazard indices. Using climate-forcing scenarios (Representative Concentration Pathways 2.6, 4.5 and 8.5), permafrost extent and hazard potential were projected for the 2041-2060 and 2061-2080 time periods. The resulting data (seven permafrost and 24 geohazard maps) are relevant to near-future infrastructure risk assessments and for targeting localized geohazard analyses.
  • Käyhkö, Janina (2019)
    Agriculture in the Nordic countries is a sector, where farmers are facing climatic challenges first-hand with little policy guidance on climate change adaptation or climate risk management. Adaptation practices emerging at the farm scale have potentially harmful outcomes that can erode the agricultural sustainability. So far, farm scale decision-making on adaptation measures is scarcely studied, and a thorough assessment of risk perceptions underlying adaptation decision-making is required in the Nordic context to inform adaptation policy planning. In this qualitative case study, the climate risk perceptions of Nordic farmers and agricultural extension officers are examined. As a result, a typology of risk responses is presented, showing three dominant patterns within highly dynamic and contextual adaptation processes at farm scale: risk aversive, opportunity-seeking and experimental. The typology represents the variation within adaptation processes that further stress the need for participatory adaptation policy development in agriculture.
  • Ge, Jielin; Berg, Björn; Xie, Zongqiang (2019)
    Abstract Evergreen and deciduous broad-leaved tree species can coexist across the globe and constitute different broad-leaved forests along large-scale geographical and climatic gradients. A better understanding of climatic influence on the distribution of mixed evergreen and deciduous broad-leaved forest is of fundamental importance when assessing this mixed forest's resilience and predicting potential dynamics of broad-leaved forests under future climate change. Here, we quantified the horizontal distribution of this mixed forest in mountains in relation to climate seasonality by compiling vegetation information from the earlier records and our own field sampling on major subtropical mountains of China. We found that the probability of occurrence of this forest in subtropical mountains was positively associated with the latitude but not the longitude. The occurrence probability of this forest was observed at high-temperature but not precipitation seasonality mountains. Temperature seasonality was five times more important than precipitation seasonality in explaining the total variation of occurrence of this mixed forest. For its distribution, our results shed light on that temperature seasonality was generally a more powerful predictor than precipitation seasonality for montane mixed forest distribution. Collectively, this study clearly underscores the important role of temperature seasonality, a previously not quantified climatic variable, in the occurrence of this mixed forest along geographical gradients and hence yields useful insight into our understanding of climate?vegetation relationships and climate change vulnerability assessment in a changing climate.