Browsing by Subject "VEHICLES"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Toropainen, Elisa; Fraser-Miller, Sara J.; Novakovic, Dunja; Del Amo, Eva M.; Vellonen, Kati-Sisko; Ruponen, Marika; Viitala, Tapani; Korhonen, Ossi; Auriola, Seppo; Hellinen, Laura; Reinisalo, Mika; Tengvall, Unni; Choi, Stephanie; Absar, Mohammad; Strachan, Clare; Urtti, Arto (2021)
    Eye drops of poorly soluble drugs are frequently formulated as suspensions. Bioavailability of suspended drug depends on the retention and dissolution of drug particles in the tear fluid, but these factors are still poorly understood. We investigated seven ocular indomethacin suspensions (experimental suspensions with two particle sizes and three viscosities, one commercial suspension) in physical and biological tests. The median particle size (d(50)) categories of the experimental suspensions were 0.37-1.33 and 3.12-3.50 mu m and their viscosity levels were 1.3, 7.0, and 15 mPa center dot s. Smaller particle size facilitated ocular absorption of indomethacin to the aqueous humor of albino rabbits. In aqueous humor the AUC values of indomethacin suspensions with different particle sizes, but equal viscosity, differed over a 1.5 to 2.3-fold range. Higher viscosity increased ocular absorption 3.4-4.3-fold for the suspensions with similar particle sizes. Overall, the bioavailability range for the suspensions was about 8-fold. Instillation of larger particles resulted in higher tear fluid AUC values of total indomethacin (suspended and dissolved) as compared to application of smaller particles. Despite these tear fluid AUC values of total indomethacin, instillation of the larger particles resulted in smaller AUC levels of indomethacin in the aqueous humor. This suggests that the small particles yielded higher concentrations of dissolved indomethacin in the tear fluid, thereby leading to improved ocular bioavailability. This new conclusion was supported by ocular pharmacokinetic modeling. Both particle size and viscosity have a significant impact on drug concentrations in the tear fluid and ocular drug bioavailability from topical suspensions. Viscosity and particle size are the key players in the complex interplay of drug retention and dissolution in the tear fluid, thereby defining ocular drug absorption and bioequivalence of ocular suspensions.
  • Vepsäläinen, Jari; Ritari, Antti; Lajunen, Antti; Kivekäs, Klaus; Tammi, Kari (2018)
    Uncertainty in operation factors, such as the weather and driving behavior, makes it difficult to accurately predict the energy consumption of electric buses. As the consumption varies, the dimensioning of the battery capacity and charging systems is challenging and requires a dedicated decision-making process. To investigate the impact of uncertainty, six electric buses were measured in three routes with an Internet of Things (IoT) system from February 2016 to December 2017 in southern Finland in real operation conditions. The measurement results were thoroughly analyzed and the operation factors that caused variation in the energy consumption and internal resistance of the battery were studied in detail. The average energy consumption was 0.78 kWh/km and the consumption varied by more than 1 kWh/km between trips. Furthermore, consumption was 15% lower on a suburban route than on city routes. The energy consumption was mostly influenced by the ambient temperature, driving behavior, and route characteristics. The internal resistance varied mainly as a result of changes in the battery temperature and charging current. The energy consumption was predicted with above 75% accuracy with a linear model. The operation factors were correlated and a novel second-order normalization method was introduced to improve the interpretation of the results. The presented models and analyses can be integrated to powertrain and charging system design, as well as schedule planning.
  • Känkänen, Voitto; Seitsonen, Jani; Tuovinen, Henri Mikael; Ruokolainen, Janne; Hirvonen, Jouni; Balasubramanian, Vimalkumar; Santos, Hélder A. (2020)
    Nanoprecipitation is a straightforward method for the production of block copolymer nanoparticles for drug delivery applications. However, the effects of process parameters need to be understood to optimize and control the particle size distribution (PSD). To this end, we investigated the effects of material and process factors on PSD and morphology of nanoparticles prepared from an amphiphilic diblock copolymer, poly(ethylene oxide)-block-polycaprolactone. Using a Design of Experiments approach, we explored the joint effects of molecular weight, block length ratios, water volume fraction, stirring rate, polymer concentration and organic phase addition rate on hydrodynamic size and polydispersity index of the nanostructures and created statistical models explaining up to 94 % of the variance in hydrodynamic diameter. In addition, we performed morphological characterization by cryogenic transmission electron microscopy and showed that increasing the process temperature may favor the formation of vesicles from these polymers. We showed that the effects of process parameters are dependent on the polymer configuration and we found that the most useful parameters to fine-tune the PSD are the initial polymer concentration and the stirring rate. Overall, this study provides evidence on the joint effects of material and process parameters on PSD and morphology, which will be useful for rational design of formulation-specific optimization studies, scale-up and process controls.
  • Saarikoski, S.; Timonen, H.; Carbone, S.; Kuuluvainen, H.; Niemi, J. V.; Kousa, A.; Rönkkö, T.; Worsnop, D.; Hillamo, R.; Pirjola, L. (2017)
    Detailed chemical characterization of exhaust particles from 23 individual city buses was performed in Helsinki, Finland. Investigated buses represented different technologies in terms of engines, exhaust after-treatment systems (e.g., diesel particulate filter, selective catalytic reduction, and three-way catalyst) and fuels (diesel, diesel-electric (hybrid), ethanol, and compressed natural gas). Regarding emission standards, the buses operated at EURO III, EURO IV, and EEV (enhanced environmentally friendly vehicle) emission levels. The chemical composition of exhaust particles was determined by using a soot particle aerosol mass spectrometer (SP-AMS). Based on the SP-AMS results, the bus emission particles were dominated by organics and refractory black carbon (rBC). The mass spectra of organics consisted mostly of hydrocarbon fragments (54-86% of total organics), the pattern of hydrocarbon fragments being rather similar regardless of the bus type. Regarding oxygenated organic fragments, ethanol-fueled buses had unique mass-to-charge ratios (m/z) of 45, 73, 87, and 89 (mass fragments of C2H5OC, C3H5O2+, C4H7O2+, and C4H9O2+, respectively) that were not detected for the other bus types at the same level. For rBC, there was a small difference in the ratio of C-4(+) and C-5(+) to C-3(+) for different bus types but also for the individual buses of the same type. In addition to organics and rBC, the presence of trace metals in the bus emission particles was investigated.
  • Uusitalo, Jori; Ala-Ilomaki, Jari; Lindeman, Harri; Toivio, Jenny; Siren, Matti (2020)
    Key message Rut depth in fine-grained boreal soils induced by an 8-wheeled forwarder is best predicted with soil moisture content, cumulative mass of machine passes, bulk density and thickness of the humus layer. Context Forest machines are today very heavy and will cause serious damage to soil and prevent future growth if forest operations are carried out at the wrong time of the year. Forest operations performed during the wettest season should therefore be directed at coarse-grained soils that are not as prone to soil damage. Aims The study aimed at investigating the significance of the most important soil characteristics on rutting and developing models that can be utilized in predicting rutting prior to forest operations. Methods A set of wheeling tests on two fine-grained mineral soil stands in Southern Finland were performed. The wheeling experiments were conducted in three different periods of autumn in order to get the largest possible variation in moisture content. The test drives were carried out with an 8-wheeled forwarder. Results Soil moisture content is the most important factor affecting rut depth. Rut depth of an 8-wheeled forwarder in fine-grained boreal soil is best predicted with soil moisture content, cumulative mass of machine passes, bulk density and thickness of the humus layer. Conclusion The results emphasize the importance of moisture content on the risk of rutting in fine-grained mineral soils, especially with high moisture content values when soil saturation reaches 80%. The results indicate that it is of high importance that soil type and soil wetness can be predicted prior to forest operations.
  • Ruotsalainen, Laura; Renaudin, Valerie; Pei, Ling; Piras, Marco; Marais, Juliette; Cavalheri, Emerson; Kaasalainen, Sanna (2020)
    This article provides an overview of the use of inertial and visual sensors and discusses their prospects in the Arctic navigation of autonomous vehicles. We also examine the fusion algorithms used thus far for integrating vehicle localization measurements as well as the map-matching (MM) algorithms relating position coordinates with road infrastructure. Our review reveals that conventional fusion and MM methods are not enough for navigation in challenging environments, like urban areas and Arctic environments. We also offer new results from testing inertial and optical sensors in vehicle positioning in snowy conditions. We find that the fusion of Global Navigation Satellite System (GNSS) and inertial navigation systems (INSs) does not provide the accuracy required for automated driving, and the use of optical sensors is challenged by snow covering the road markings. Although extensive further research is needed to solve these problems, the fusion of GNSS, INSs, and optical sensors seems to be the best option due to their complementary nature.