Browsing by Subject "VISION"

Sort by: Order: Results:

Now showing items 1-17 of 17
  • Lappi, Otto; Lehtonen, Esko; Pekkanen, Jami; Itkonen, Teemu (2013)
  • Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo (2015)
  • Steinzeig, Anna; Molotkov, Dmitry; Castren, Eero (2017)
    Growing interest in long-term visualization of cortical structure and function requires methods that allow observation of an intact cortex in longitudinal imaging studies. Here we describe a detailed protocol for the "transparent skull" (TS) preparation based on skull clearing with cyanoacrylate, which is applicable for long-term imaging through the intact skull in mice. We characterized the properties of the TS in imaging of intrinsic optical signals and compared them with the more conventional cranial window preparation. Our results show that TS is less invasive, maintains stabile transparency for at least two months, and compares favorably to data obtained from the conventional cranial window. We applied this method to experiments showing that a four-week treatment with the antidepressant fluoxetine combined with one week of monocular deprivation induced a shift in ocular dominance in the mouse visual cortex, confirming that fluoxetine treatment restores critical-period-like plasticity. Our results demonstrate that the TS preparation could become a useful method for long-term visualization of the living mouse brain.
  • Nokelainen, Ossi; Rezende, Francisko de Moraes; Valkonen, Janne K.; Mappes, Johanna (2022)
    A big question in behavioral ecology is what drives diversity of color signals. One possible explanation is that environmental conditions, such as light environment, may alter visual signaling of prey, which could affect predator decision-making. Here, we tested the context-dependent predator selection on prey coloration. In the first experiment, we tested detectability of artificial visual stimuli to blue tits (Cyanistes caeruleus) by manipulating stimulus luminance and chromatic context of the background. We expected the presence of the chromatic context to facilitate faster target detection. As expected, blue tits found targets on chromatic yellow background faster than on achromatic grey background whereas in the latter, targets were found with smaller contrast differences to the background. In the second experiment, we tested the effect of two light environments on the survival of aposematic, color polymorphic wood tiger moth (Arctia plantaginis). As luminance contrast should be more detectable than chromatic contrast in low light intensities, we expected birds, if they find the moths aversive, to avoid the white morph which is more conspicuous than the yellow morph in low light (and vice versa in bright light). Alternatively, birds may attack first moths that are more detectable. We found birds to attack yellow moths first in low light conditions, whereas white moths were attacked first more frequently in bright light conditions. Our results show that light environments affect predator foraging decisions, which may facilitate context-dependent selection on visual signals and diversity of prey phenotypes in the wild. Light environments are constantly changing and may alter visual appearance of prey, but also bias predators' decision making. Our findings using blue tits in visual search tasks and the wood tiger moth prey under two light environments demonstrate that birds show context-dependent predatory behavior. This suggests that light environments can play a major selective role and influence visual signaling in the wild.
  • Feldman, Tatiana; Yakovleva, Marina; Viljanen, Martta Leena Maria; Lindström, Magnus; Donner, Kristian; Ostrovsky, M.A. (2020)
    We have studied dark-adaptation at three levels in the eyes of the crustaceanMysis relictaover 2-3 weeks after exposing initially dark-adapted animals to strong white light: regeneration of 11-cisretinal through the retinoid cycle (by HPLC), restoration of native rhodopsin in photoreceptor membranes (by MSP), and recovery of eye photosensitivity (by ERG). We compare two model populations ("Sea", S-p, and "Lake", L-p) inhabiting, respectively, a low light and an extremely dark environment. 11-cisretinal reached 60-70% of the pre-exposure levels after 2 weeks in darkness in both populations. The only significant L-p/S(p)difference in the retinoid cycle was that L(p)had much higher levels of retinol, both basal and light-released. In S-p, rhodopsin restoration and eye photoresponse recovery parallelled 11-cisretinal regeneration. In L-p, however, even after 3 weeks only ca. 25% of the rhabdoms studied had incorporated new rhodopsin, and eye photosensitivity showed only incipient recovery from severe depression. The absorbance spectra of the majority of the L(p)rhabdoms stayed constant around 490-500 nm, consistent with metarhodopsin II dominance. We conclude that sensitivity recovery of S(p)eyes was rate-limited by the regeneration of 11-cisretinal, whilst that of L(p)eyes was limited by inertia in photoreceptor membrane turnover.
  • Aston, Stacey; Denisova, Kristina; Hurlbert, Anya; Olkkonen, Maria; Pearce, Bradley; Rudd, Michael; Werner, Annette; Xiao, Bei (2020)
    The colors that people see depend not only on the surface properties of objects but also on how these properties interact with light as well as on how light reflected from objects interacts with an individual's visual system. Because individual visual systems vary, the same visual stimulus may elicit different perceptions from different individuals. #thedress phenomenon drove home this point: different individuals viewed the same image and reported it to be widely different colors: blue and black versus white and gold. This phenomenon inspired a collection of demonstrations presented at the Vision Sciences Society 2015 Meeting which showed how spatial and temporal manipulations of light spectra affect people's perceptions of material colors and illustrated the variability in individual color perception. The demonstrations also explored the effects of temporal alterations in metameric lights, including Maxwell's Spot, an entoptic phenomenon. Crucially, the demonstrations established that #thedress phenomenon occurs not only for images of the dress but also for the real dress under real light sources of different spectral composition and spatial configurations.
  • Lappi, Otto (2014)
    Studying human behavior in the natural context of everyday visual tasks—including locomotor tasks such as driving—can reveal visual strategies or even suggest underlying visual mechanisms. This paper reviews empirical and theoretical work in the past 20 years (1994–2014) on the visual control of steering a vehicle along a winding path—one of the most comprehensively studied forms of visually guided locomotion in humans. The focus is on on-road studies of visual behavior and what they can reveal about the visual strategies in curve driving. Theoretical models and results from simulator studies are discussed where they have direct relevance to the interpretation of on-road data. For the past 20 years, the point of departure in studies of curve driving has been tangent point orientation, and tangent point models (models based on tracking the tangent point) have become established as the default account of how vision is used in curve negotiation. More recent studies have questioned the generality of the tangent point hypothesis, however, arguing that in addition to (or instead of) the tangent point, drivers target visual reference points on their future path. Ecological validity of real-world studies often comes at the cost of methodological challenges that make the data difficult to interpret in terms of underlying mechanisms, and the limitations of existing data and the complementary roles of real-world and laboratory studies are discussed.
  • Lankinen, Kaisu; Smeds, Eero; Tikka, Pia; Pihko, Elina; Hari, Riitta; Koskinen, Miika (2016)
    Observation of another person's actions and feelings activates brain areas that support similar functions in the observer, thereby facilitating inferences about the other's mental and bodily states. In real life, events eliciting this kind of vicarious brain activations are intermingled with other complex, ever-changing stimuli in the environment. One practical approach to study the neural underpinnings of real-life vicarious perception is to image brain activity during movie viewing. Here the goal was to find out how observed haptic events in a silent movie would affect the spectator's sensorimotor cortex. The functional state of the sensorimotor cortex was monitored by analyzing, in 16 healthy subjects, magnetoencephalographic (MEG) responses to tactile finger stimuli that were presented once per second throughout the session. Using canonical correlation analysis and spatial filtering, consistent single-trial responses across subjects were uncovered, and their waveform changes throughout the movie were quantified. The long-latency (85-175 ms) parts of the responses were modulated in concordance with the participants' average moment-by-moment ratings of own engagement in the haptic content of the movie (correlation r=0.49; ratings collected after the MEG session). The results, obtained by using novel signal-analysis approaches, demonstrate that the functional state of the human sensorimotor cortex fluctuates in a fine-grained manner even during passive observation of temporally varying haptic events. Hum Brain Mapp 37:4061-4068, 2016. (c) 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
  • Lappi, Otto; Pekkanen, Jami; Rinkkala, Paavo; Tuhkanen, Samuel; Tuononen, Ari; Virtanen, Juho-Pekka (2020)
    It is well-established how visual stimuli and self-motion in laboratory conditions reliably elicit retinal-image-stabilizing compensatory eye movements (CEM). Their organization and roles in natural-task gaze strategies is much less understood: are CEM applied in active sampling of visual information in human locomotion in the wild? If so, how? And what are the implications for guidance? Here, we directly compare gaze behavior in the real world (driving a car) and a fixed base simulation steering task. A strong and quantifiable correspondence between self-rotation and CEM counter-rotation is found across a range of speeds. This gaze behavior is “optokinetic”, i.e. optic flow is a sufficient stimulus to spontaneously elicit it in naïve subjects and vestibular stimulation or stereopsis are not critical. Theoretically, the observed nystagmus behavior is consistent with tracking waypoints on the future path, and predicted by waypoint models of locomotor control - but inconsistent with travel point models, such as the popular tangent point model.
  • Grzybowski, Andrzej; Kanclerz, Piotr; Tuuminen, Raimo (2020)
    Purpose Multifocal intraocular lenses (MIOLs) are often discouraged in patients with or at risk of retinal disorders (including diabetic retinopathy, age-related macular degeneration, and epiretinal membranes), as MIOLs are believed to reduce contrast sensitivity (CS). Concerns with MIOLs have also been raised in individuals with visual field defects, fixation instability or eccentric preferred retinal locations. The aim of this study is to review the influence of MIOL on quality of vision in patients with retinal diseases. Methods We reviewed the PubMed and Web of Science databases to identify relevant studies using the following keywords: multifocal intraocular lens, cataract surgery, cataract extraction, lens exchange, diabetic retinopathy, age-related macular degeneration, and contrast sensitivity. Results Studies evaluating CS in MIOLs present conflicting results: MIOLs either did not influence CS or resulted in worse performance under low-illuminance conditions and higher spatial frequencies when compared to monofocal IOLs. Nevertheless, MIOLs preserved CS levels within the age-matched normal range. Two studies reported that patients with concurrent retinal diseases receiving a MIOL, both unilaterally and bilaterally, reported a significant improvement in visual-related outcomes. Individuals with a monofocal IOL in one eye and a MIOL in the fellow eye reported greater subjective satisfaction with the MIOL. Conclusion We were unable to find evidence suggesting that patients with retinal diseases should be advised against MIOLs. Nevertheless, more research is needed to address the aforementioned concerns and to optimize the use of MIOLs in eyes with retinal disease.
  • Wedge-Roberts, Rebecca; Aston, Stacey; Beierholm, Ulrik; Kentridge, Robert; Hurlbert, Anya; Nardini, Marko; Olkkonen, Maria (2020)
    Previous studies suggest that to achieve color constancy, the human visual system makes use of multiple cues, including a priori assumptions about the illumination (“daylight priors”). Specular highlights have been proposed to aid constancy, but the evidence for their usefulness is mixed. Here, we used a novel cue-combination approach to test whether the presence of specular highlights or the validity of a daylight prior improves illumination chromaticity estimates, inferred from achromatic settings, to determine whether and under which conditions either cue contributes to color constancy. Observers made achromatic settings within three-dimensional rendered scenes containing matte or glossy shapes, illuminated by either daylight or nondaylight illuminations. We assessed both the variability of these settings and their accuracy, in terms of the standard color constancy index (CCI). When a spectrally uniform background was present, neither CCIs nor variability improved with specular highlights or daylight illuminants (Experiment 1). When a Mondrian background was introduced, CCIs decreased overall but were higher for scenes containing glossy, as opposed to matte, shapes (Experiments 2 and 3). There was no overall reduction in variability of settings and no benefit for scenes illuminated by daylights. Taken together, these results suggest that the human visual system indeed uses specular highlights to improve color constancy but only when other cues, such as from the local surround, are weakened.
  • Yovanovich, Carola A. M.; Koskela, Sanna M.; Nevala, Noora; Kondrashev, Sergei L.; Kelber, Almut; Donner, Kristian (2017)
    The presence of two spectrally different kinds of rod photoreceptors in amphibians has been hypothesized to enable purely rod-based colour vision at very low light levels. The hypothesis has never been properly tested, so we performed three behavioural experiments at different light intensities with toads (Bufo) and frogs (Rana) to determine the thresholds for colour discrimination. The thresholds of toads were different in mate choice and prey-catching tasks, suggesting that the differential sensitivities of different spectral cone types as well as task-specific factors set limits for the use of colour in these behavioural contexts. In neither task was there any indication of rod-based colour discrimination. By contrast, frogs performing phototactic jumping were able to distinguish blue from green light down to the absolute visual threshold, where vision relies only on rod signals. The remarkable sensitivity of this mechanism comparing signals from the two spectrally different rod types approaches theoretical limits set by photon fluctuations and intrinsic noise. Together, the results indicate that different pathways are involved in processing colour cues depending on the ecological relevance of this information for each task. This article is part of the themed issue 'Vision in dim light'.
  • Yovanovich, Carola A. M.; Koskela, Sanna M.; Nevala, Noora; Kondrashev, Sergei L.; Kelber, Almut; Donner, Kristian (The Royal Society of Chemistry, 2017)
    The presence of two spectrally different kinds of rod photoreceptors in amphibians has been hypothesized to enable purely rod-based colour vision at very low light levels. The hypothesis has never been properly tested, so we performed three behavioural experiments at different light intensities with toads (Bufo) and frogs (Rana) to determine the thresholds for colour discrimination. The thresholds of toads were different in mate choice and prey-catching tasks, suggesting that the differential sensitivities of different spectral cone types as well as task-specific factors set limits for the use of colour in these behavioural contexts. In neither task was there any indication of rod-based colour discrimination. By contrast, frogs performing phototactic jumping were able to distinguish blue from green light down to the absolute visual threshold, where vision relies only on rod signals. The remarkable sensitivity of this mechanism comparing signals from the two spectrally different rod types approaches theoretical limits set by photon fluctuations and intrinsic noise. Together, the results indicate that different pathways are involved in processing colour cues depending on the ecological relevance of this information for each task. This article is part of the themed issue 'Vision in dim light'.
  • Majander, Anna; Joao, Catarina; Rider, Andrew T.; Henning, G. Bruce; Votruba, Marcela; Moore, Anthony T.; Yu-Wai-Man, Patrick; Stockman, Andrew (2017)
    PURPOSE. Progressive retinal ganglion cell (RGC) loss is the pathological hallmark of autosomal dominant optic atrophy (DOA) caused by pathogenic OPA1 mutations. The aim of this study was to conduct an in-depth psychophysical study of the visual losses in DOA and to infer any selective vulnerability of visual pathways subserved by different RGC subtypes. METHODS. We recruited 25 patients carrying pathogenic OPA1 mutations and age-matched healthy individuals. Spatial contrast sensitivity functions (SCSFs) and chromatic contrast sensitivity were quantified, the latter using the Cambridge Colour Test. In 11 patients, long (L) and short (S) wavelength-sensitive cone temporal acuities were measured as a function of target illuminance, and L-cone temporal contrast sensitivity (TCSF) as a function of temporal frequency. RESULTS. Spatial contrast sensitivity functions were abnormal, with the loss of sensitivity increasing with spatial frequency. Further, the highest L-cone temporal acuity fell on average by 10 Hz and the TCSFs by 0.66 log(10) unit. Chromatic thresholds along the protan, deutan, and tritan axes were 8, 9, and 14 times higher than normal, respectively, with losses increasing with age and S-cone temporal acuity showing the most significant age-related decline. CONCLUSIONS. Losses of midget parvocellular, parasol magnocellular, and bistratified koniocellular RGCs could account for the losses of high spatial frequency sensitivity and protan and deutan sensitivities, high temporal frequency sensitivity, and S-cone temporal and tritan sensitivities, respectively. The S-cone-related losses showed a significant deterioration with increasing patient age and could therefore prove useful biomarkers of disease progression in DOA.
  • Kilpelainen, Markku; Putnam, Nicole M.; Ratnam, Kavitha; Roorda, Austin (2021)
    Due to the dramatic difference in spatial resolution between the central fovea and the surrounding retinal regions, accurate fixation on important objects is critical for humans. It is known that the preferred retinal location (PRL) for fixation of healthy human observers rarely coincides with the retinal location with the highest cone density. It is not currently known, however, whether the PRL is consistent within an observer or is subject to fluctuations and, moreover, whether observers' subjective fixation location coincides with the PRL. We studied whether the PRL changes between days. We used an adaptive optics scanning laser ophthalmoscope to project a Maltese cross fixation target on an observer's retina and continuously imaged the exact retinal location of the target. We found that observers consistently use the same PRL across days, regardless of how much the PRL is displaced from the cone density peak location. We then showed observers small stimuli near the visual field location on which they fixated, and the observers judged whether or not the stimuli appeared in fixation. Observers' precision in this task approached that of fixation itself. Observers based their judgment on both the visual scene coordinates and the retinal location of the stimuli. We conclude that the PRL in a normally functioning visual system is fixed, and observers use it as a reference point in judging stimulus locations.
  • Ruotsalainen, Laura; Renaudin, Valerie; Pei, Ling; Piras, Marco; Marais, Juliette; Cavalheri, Emerson; Kaasalainen, Sanna (2020)
    This article provides an overview of the use of inertial and visual sensors and discusses their prospects in the Arctic navigation of autonomous vehicles. We also examine the fusion algorithms used thus far for integrating vehicle localization measurements as well as the map-matching (MM) algorithms relating position coordinates with road infrastructure. Our review reveals that conventional fusion and MM methods are not enough for navigation in challenging environments, like urban areas and Arctic environments. We also offer new results from testing inertial and optical sensors in vehicle positioning in snowy conditions. We find that the fusion of Global Navigation Satellite System (GNSS) and inertial navigation systems (INSs) does not provide the accuracy required for automated driving, and the use of optical sensors is challenged by snow covering the road markings. Although extensive further research is needed to solve these problems, the fusion of GNSS, INSs, and optical sensors seems to be the best option due to their complementary nature.
  • Mustonen, Virpi; Hakkarainen, Kai (2015)
    The purpose of this study is to analyse the development of two apprentices' adaptive expertise in fingerprint examination across a two-year training program. The apprentices were selected from a large number of candidates to be trained at the Forensic Laboratory of the Finnish National Bureau of Investigation. The problem addressed was how the newcomers' professional vision needed for examining fingerprints developed, what kinds of agentic efforts for improving performance did they engage in when analysing successively more challenging fingerprints, and how did they themselves reflect on their developing professional performance. The study relied on multiple bodies of data consisting of a large number of fingerprints examined by the apprentices, repeated interviews, and their extensive learning diaries. The analysis revealed various challenges and obstacles of acquiring the professional vision and skills of fingerprint examination, such as identifying relevant minutiae in poor-quality fingerprints, carrying out searches through the Automatic Fingerprint Identification System (AFIS), and interpreting results. Although the apprentices cultivated self-reflective competencies, the professional practices appropriated also mirrored some of the maladaptive working habits of the experienced examiners with whom they were working. Through the training process, both of the apprentices gained professional competencies comparable with those of experienced examiners. The apprentices' ways of reflecting on their evolving professional performance differed, and there was no straightforward relation between their self-reflections and levels of performance.