Browsing by Subject "VISUAL-CORTEX"

Sort by: Order: Results:

Now showing items 1-12 of 12
  • Hosoya, Haruo; Hyvärinen, Aapo (2017)
    Experimental studies have revealed evidence of both parts-based and holistic representations of objects and faces in the primate visual system. However, it is still a mystery how such seemingly contradictory types of processing can coexist within a single system. Here, we propose a novel theory called mixture of sparse coding models, inspired by the formation of category-specific subregions in the inferotemporal (IT) cortex. We developed a hierarchical network that constructed a mixture of two sparse coding submodels on top of a simple Gabor analysis. The submodels were each trained with face or non-face object images, which resulted in separate representations of facial parts and object parts. Importantly, evoked neural activities were modeled by Bayesian inference, which had a top-down explaining-away effect that enabled recognition of an individual part to depend strongly on the category of the whole input. We show that this explaining-away effect was indeed crucial for the units in the face submodel to exhibit significant selectivity to face images over object images in a similar way to actual face-selective neurons in the macaque IT cortex. Furthermore, the model explained, qualitatively and quantitatively, several tuning properties to facial features found in the middle patch of face processing in IT as documented by Freiwald, Tsao, and Livingstone (2009). These included, in particular, tuning to only a small number of facial features that were often related to geometrically large parts like face outline and hair, preference and anti-preference of extreme facial features (e.g., very large/small inter-eye distance), and reduction of the gain of feature tuning for partial face stimuli compared to whole face stimuli. Thus, we hypothesize that the coding principle of facial features in the middle patch of face processing in the macaque IT cortex may be closely related to mixture of sparse coding models.
  • Pigorini, Andrea; Sarasso, Simone; Proserpio, Paola; Szymanski, Caroline; Arnulfo, Gabriele; Casarotto, Silvia; Fecchio, Matteo; Rosanova, Mario; Mariotti, Maurizio; Lo Russo, Giorgio; Palva, J. Matias; Nobili, Lino; Massimini, Marcello (2015)
    During non-rapid eye movement (NREM) sleep (stage N3), when consciousness fades, cortico-cortical interactions are impaired while neurons are still active and reactive. Why is this? We compared cortico-cortical evoked-potentials recorded during wakefulness and NREM by means of time-frequency analysis and phase-locking measures in 8 epileptic patients undergoing intra-cerebral stimulations/recordings for clinical evaluation. We observed that, while during wakefulness electrical stimulation triggers a chain of deterministic phase-locked activations in its cortical targets, during NREM the same input induces a slow wave associated with an OFF-period (suppression of power > 20 Hz), possibly reflecting a neuronal down-state. Crucially, after the OFF-period, cortical activity resumes to wakefulness-like levels, but the deterministic effects of the initial input are lost, as indicated by a sharp drop of phase-locked activity. These findings suggest that the intrinsic tendency of cortical neurons to fall into a down-state after a transient activation (i.e. bistability) prevents the emergence of stable patterns of causal interactions among cortical areas during NREM. Besides sleep, the same basic neurophysiological dynamics may play a role in pathological conditions in which thalamo-cortical information integration and consciousness are impaired in spite of preserved neuronal activity. (C) 2015 The Authors. Published by Elsevier Inc.
  • Lankinen, Kaisu; Saari, Jukka; Hlushchuk, Yevhen; Tikka, Pia; Parkkonen, Lauri; Hari, Riitta; Koskinen, Miika (2018)
    Movie viewing allows human perception and cognition to be studied in complex, real-life-like situations in a brain-imaging laboratory. Previous studies with functional magnetic resonance imaging (fMRI) and with magneto-and electroencephalography (MEG and EEG) have demonstrated consistent temporal dynamics of brain activity across movie viewers. However, little is known about the similarities and differences of fMRI and MEG or EEG dynamics during such naturalistic situations. We thus compared MEG and fMRI responses to the same 15-min black-and-white movie in the same eight subjects who watched the movie twice during both MEG and fMRI recordings. We analyzed intra-and intersubject voxel-wise correlations within each imaging modality as well as the correlation of the MEG envelopes and fMRI signals. The fMRI signals showed voxel-wise within-and between-subjects correlations up to r = 0.66 and r = 0.37, respectively, whereas these correlations were clearly weaker for the envelopes of band-pass filtered (7 frequency bands below 100 Hz) MEG signals (within-subjects correlation r <0.14 and between-subjects r <0.05). Direct MEG-fMRI voxel-wise correlations were unreliable. Notably, applying a spatial-filtering approach to the MEG data uncovered consistent canonical variates that showed considerably stronger (up to r = 0.25) between-subjects correlations than the univariate voxel-wise analysis. Furthermore, the envelopes of the time courses of these variates up to about 10 Hz showed association with fMRI signals in a general linear model. Similarities between envelopes of MEG canonical variates and fMRI voxel time-courses were seen mostly in occipital, but also in temporal and frontal brain regions, whereas intra-and intersubject correlations for MEG and fMRI separately were strongest only in the occipital areas. In contrast to the conventional univariate analysis, the spatial-filtering approach was able to uncover associations between the MEG envelopes and fMRI time courses, shedding light on the similarities of hemodynamic and electromagnetic brain activities during movie viewing.
  • He, Bin; Astolfi, Laura; Valdes-Sosa, Pedro Antonio; Marinazzo, Daniele; Palva, Satu O.; Benar, Christian-George; Michel, Christoph M.; Koenig, Thomas (2019)
    We review the theory and algorithms of electrophysiological brain connectivity analysis. This tutorial is aimed at providing an introduction to brain functional connectivity from electrophysiological signals, including electroencephalography, magnetoencephalography, electrocorticography, and stereoelectroencephalography. Various connectivity estimators are discussed, and algorithms introduced. Important issues for estimating and mapping brain functional connectivity with electrophysiology are discussed.
  • Maria, Ambika; Shekhar, Shashank; Nissilä, Ilkka; Kotilahti, Kalle; Huotilainen, Minna; Karlsson, Linnea; Karlsson, Hasse; Tuulari, Jetro J. (2018)
    Emotional stimuli processing during childhood helps us to detect salient cues in our environment and prepares us for our social life. In early childhood, the emotional valences of auditory and visual input are salient and relevant cues of social aspects of the environment, and it is of special interest to understand how exactly the processing ofemotional stimuli develops. Near-infrared spectroscopy (NIRS) is a noninvasive neuroimaging tool that has proven valuable in studying emotional processing in children. After conducting a systematic search of PubMed, Web of Science, and Embase databases, we examined 50 NIRS studies performed to study emotional stimuli processing in children in the first 2 years of age. We found that the majority of these studies are done in infants and the most commonly used stimuli are visual and auditory. Many of the reviewed studies suggest the involvement of bilateral temporal areas in emotional processing of visual and auditory stimuli. It is unclear which neural activation patterns reflect maturation and at what age the emotional encoding reaches those typically seen in adults. Our review provides an overview of the database on emotional processing in children up to 2 years of age. Furthermore, it demonstrates the need to include the less-studied age range of 1 to 2 years, and suggests the use of combined audio-visual stimuli and longitudinal studies for future research on emotional processing in children. Thus, NIRS might be a vital tool to study the associations between the early pattern of neural responses and socioemotional development later in life.
  • Olkkonen, Maria; Aguirre, Geoffrey K.; Epstein, Russell A. (2017)
    Neural responses to stimuli are often attenuated by repeated presentation. When observed in blood oxygen level-dependent signals, this attenuation is known as fMRI adaptation (fMRIa) or fMRI repetition suppression. According to a prominent account, fMRIa reflects the fulfillment of perceptual expectations during recognition of repeated items (Summerfield, Trittschuh, Monti, Mesulam, & Egner, 2008). Supporting this idea, expectation has been shown to modulate fMRIa under some circumstances; however, it is not currently known whether expectation similarly modulates recognition performance. To address this lacuna, we measured behavioral and fMRI responses to faces while varying the extent to which each stimulus was informative about its successor. Behavioral priming was greater when repetitions were more likely, suggesting that recognition was facilitated by the expectation than an item would repeat. Notably, this effect was only observed when stimuli were drawn from a broad set of faces including many ethnicities and both genders, but not when stimuli were drawn from a narrower face set, thus making repetitions less informative. Moreover, expectation did not modulate fMRIa in face-selective cortex, contrary to previous studies, although an exploratory analysis indicated that it did so in a medial frontal region. These results support the idea that expectation modulates recognition efficiency, but insofar as behavioral effects of expectation were not accompanied by fMRI effects in visual cortex, they suggest that fMRIa cannot be entirely explained in terms of fulfilled expectations.
  • Shekhar, Shashank; Maria, Ambika; Kotilahti, Kalle; Huotilainen, Minna; Heiskala, Juha; Tuulari, Jetro J.; Hirvi, Pauliina; Karlsson, Linnea; Karlsson, Hasse; Nissila, Ilkka (2019)
    Emotional speech is one of the principal forms of social communication in humans. In this study, we investigated neural processing of emotional speech (happy, angry, sad and neutral) in the left hemisphere of 21 two-month-old infants using diffuse optical tomography. Reconstructed total hemoglobin (HbT) images were analysed using adaptive voxel-based clustering and region-of-interest (ROI) analysis. We found a distributed happy > neutral response within the temporo-parietal cortex, peaking in the anterior temporal cortex; a negative HbT response to emotional speech (the average of the emotional speech conditions <baseline) in the temporo-parietal cortex, neutral > angry in the anterior superior temporal sulcus (STS), happy > angry in the superior temporal gyrus and posterior superior temporal sulcus, angry <baseline in the insula, superior temporal sulcus and superior temporal gyrus and happy <baseline in the anterior insula. These results suggest that left STS is more sensitive to happy speech as compared to angry speech, indicating that it might play an important role in processing positive emotions in two-month-old infants. Furthermore, happy speech (relative to neutral) seems to elicit more activation in the temporo-parietal cortex, thereby suggesting enhanced sensitivity of temporo-parietal cortex to positive emotional stimuli at this stage of infant development.
  • Bosseler, Alexis N.; Teinonen, Tuomas; Tervaniemi, Mari; Huotilainen, Minna (2016)
    Statistical learning and the social contexts of language addressed to infants are hypothesized to play important roles in early language development. Previous behavioral work has found that the exaggerated prosodic contours of infant-directed speech (IDS) facilitate statistical learning in 8-month-old infants. Here we examined the neural processes involved in on-line statistical learning and investigated whether the use of IDS facilitates statistical learning in sleeping newborns. Event-related potentials (ERPs) were recorded while newborns were exposed to 12 pseudo-words, six spoken with exaggerated pitch contours of IDS and six spoken without exaggerated pitch contours (ADS) in ten alternating blocks. We examined whether ERP amplitudes for syllable position within a pseudo-word (word-initial vs. word-medial vs. word-final, indicating statistical word learning) and speech register (ADS vs. IDS) would interact. The ADS and IDS registers elicited similar ERP patterns for syllable position in an early 0-100 ms component but elicited different ERP effects in both the polarity and topographical distribution at 200-400 ms and 450-650 ms. These results provide the first evidence that the exaggerated pitch contours of IDS result in differences in brain activity linked to on-line statistical learning in sleeping newborns.
  • Arnulfo, Gabriele; Wang, Sheng H.; Myrov, Vladislav; Toselli, Benedetta; Hirvonen, Jonni; Fato, MM; Nobili, L; Cardinale, F; Rubino, A; Zhigalov, Alexander; Palva, Satu; Palva, Matias (2020)
    Inter-areal synchronization of neuronal oscillations at frequencies below similar to 100Hz is a pervasive feature of neuronal activity and is thought to regulate communication in neuronal circuits. In contrast, faster activities and oscillations have been considered to be largely local-circuit-level phenomena without large-scale synchronization between brain regions. We show, using human intracerebral recordings, that 100-400Hz high-frequency oscillations (HFOs) may be synchronized between widely distributed brain regions. HFO synchronization expresses individual frequency peaks and exhibits reliable connectivity patterns that show stable community structuring. HFO synchronization is also characterized by a laminar profile opposite to that of lower frequencies. Importantly, HFO synchronization is both transiently enhanced and suppressed in separate frequency bands during a response-inhibition task. These findings show that HFO synchronization constitutes a functionally significant form of neuronal spike-timing relationships in brain activity and thus a mesoscopic indication of neuronal communication per se.
  • Hakonen, Maria; May, Patrick J. C.; Jaaskelainen, Iiro P.; Jokinen, Emma; Sams, Mikko; Tiitinen, Hannu (2017)
    Introduction: We examined which brain areas are involved in the comprehension of acoustically distorted speech using an experimental paradigm where the same distorted sentence can be perceived at different levels of intelligibility. This change in intelligibility occurs via a single intervening presentation of the intact version of the sentence, and the effect lasts at least on the order of minutes. Since the acoustic structure of the distorted stimulus is kept fixed and only intelligibility is varied, this allows one to study brain activity related to speech comprehension specifically. Methods: In a functional magnetic resonance imaging (fMRI) experiment, a stimulus set contained a block of six distorted sentences. This was followed by the intact counterparts of the sentences, after which the sentences were presented in distorted form again. A total of 18 such sets were presented to 20 human subjects. Results: The blood oxygenation level dependent (BOLD)-responses elicited by the distorted sentences which came after the disambiguating, intact sentences were contrasted with the responses to the sentences presented before disambiguation. This revealed increased activity in the bilateral frontal pole, the dorsal anterior cingulate/paracingulate cortex, and the right frontal operculum. Decreased BOLD responses were observed in the posterior insula, Heschl's gyrus, and the posterior superior temporal sulcus. Conclusions: The brain areas that showed BOLD-enhancement for increased sentence comprehension have been associated with executive functions and with the mapping of incoming sensory information to representations stored in episodic memory. Thus, the comprehension of acoustically distorted speech may be associated with the engagement of memory-related subsystems. Further, activity in the primary auditory cortex was modulated by prior experience, possibly in a predictive coding framework. Our results suggest that memory biases the perception of ambiguous sensory information toward interpretations that have the highest probability to be correct based on previous experience.
  • Cowley, Benjamin Ultan; Juurmaa, Kristiina; Palomaki, Jussi (2022)
    Attention-deficit/hyperactivity disorder (ADHD) in adults is understudied, especially regarding neural mechanisms such as oscillatory control of attention sampling. We report an electroencephalography (EEG) study of such cortical mechanisms, in ADHD-diagnosed adults during administration of Test of Variables of Attention (TOVA), a gold-standard continuous performance test for ADHD that measures the ability to sustain attention and inhibit impulsivity. We recorded 53 adults (28 female, 25 male, aged 18-60), and 18 matched healthy controls, using 128-channel EEG. We analyzed sensor-space features established as neural correlates of attention: timing-sensitivity and phase-synchrony of response activations, and event-related (de)synchronization (ERS/D) of alpha and theta frequency band activity; in frontal and parietal scalp regions. TOVA test performance significantly distinguished ADHD adults from neurotypical controls, in commission errors, response time variability (RTV) and d' (response sensitivity). The ADHD group showed significantly weaker target-locked and responselocked amplitudes, that were strongly right-lateralized at the N2 wave, and weaker phase synchrony (longer reset poststimulus). They also manifested significantly less parietal prestimulus 8-Hz theta ERS, less frontal and parietal poststimulus 4-Hz theta ERS, and more frontal and parietal prestimulus alpha ERS during correct trials. These differences may reflect excessive modulation of endogenous activity by strong entrainment to stimulus (alpha), combined with deficient modulation by neural entrainment to task (theta), which in TOVA involves monitoring stimulus spatial location (not predicted occurrence onset which is regular and task-irrelevant). Building on the hypotheses of theta coding for relational structure and rhythmic attention sampling, our results suggest that ADHD adults have impaired attention sampling in relational categorization tasks.