Browsing by Subject "VIVO"

Sort by: Order: Results:

Now showing items 1-11 of 11
  • Rotgers, E.; Cisneros-Montalvo, S.; Jahnukainen, K.; Sandholm, J.; Toppari, J.; Nurmio, M. (2015)
    Accurate analysis and quantification of different testicular cell populations are of central importance in studies of male reproductive biology. The traditional histomorphometric and immunohistochemical methods remain the gold standard in studying the complex dynamics of the testicular tissue. Through past years advances have been made in the application of flow cytometry for the rapid analysis of testicular cell populations. Detection of DNA content and of surface antigens and fluorescent reporters have been widely used to analyze and sort cells. Detection of intracellular antigens can broaden the possibilities of applying flow cytometry in studies of male reproduction. Here, we report a detailed protocol for the preparation of rat testicular tissue for detection of intracellular antigens by flow cytometry, and a pipeline for subsequent data analysis and troubleshooting. Rat testicular ontogenesis was chosen as the experimental model to validate the performance of the assay using vimentin and gamma H2AX as intracellular markers for the somatic and spermatogenic cells, respectively. The results show that the assay is reproducible and recapitulates the rat testis ontogenesis.
  • Lavilla-Alonso, Sergio; Bauerschmitz, Gerd; Abo-Ramadan, Usama; Halavaara, Juha; Escutenaire, Sophie; Diaconu, Iulia; Tatlisumak, Turgut; Kanerva, Anna; Hemminki, Akseli; Pesonen, Sari (2010)
  • Perez-Tanoira, Ramon; Horwat, David; Kinnari, Teemu J.; Perez-Jorge, Concepcion; Gomez-Barrena, Enrique; Migot, Sylvie; Esteban, Jaime (2016)
    The aim of this study was to compare the bacterial adhesion of Staphylococcus spp. on Ti-6Al-4V with respect to Ti-6Al-V modified alloys with a set of Cubic yttria stabilized zirconia (YSZ) and Ag-YSZ nanocomposite films. Silver is well known to have a natural biocidal character and its presence in the surface predicted to enhance the antimicrobial properties of biomedical surfaces. Microbial adhesion tests were performed using collection strains and twelve clinical strains of Staphylococcus aureus and Staphylococcus epidermidis. The adherence study was performed using a previously published protocol by Kinnari et al. Both collection strains and clinical isolates have shown lower bacterial adhesion to materials modified with respect to the alloy Ti-6Al-4V and the modification with silver reduced the bacterial adhesion for most of all the strains studied. Moreover the percentage of dead bacteria have been evaluated, demonstrating increased proportion of dead bacteria for the modified surfaces. Nanocrystalline silver dissolves releasing both Ag+ and Ag-0 whereas other silver sources release only Ag+. We can conclude that YSZ with nanocrystalline silver coating may lead to diminished postoperative infections and to increased corrosion and scratch resistance of YSZ incorporating alloys Ti-6Al-4V.
  • Davies, Emma; Dong, Meng; Gutekunst, Matthias; Narhi, Katja; van Zoggel, Hanneke J. A. A.; Blom, Sami; Nagaraj, Ashwini; Metsalu, Tauno; Oswald, Eva; Erkens-Schulze, Sigrun; San Martin, Juan A. Delgado; Turkki, Riku; Wedge, Stephen R.; af Hallstrom, Taija M.; Schueler, Julia; van Weerden, Wytske M.; Verschuren, Emmy W.; Barry, Simon T.; van der Kuip, Heiko; Hickman, John A. (2015)
    Precision-cut slices of in vivo tumours permit interrogation in vitro of heterogeneous cells from solid tumours together with their native microenvironment. They offer a low throughput but high content in vitro experimental platform. Using mouse models as surrogates for three common human solid tumours, we describe a standardised workflow for systematic comparison of tumour slice cultivation methods and a tissue microarray-based method to archive them. Cultivated slices were compared to their in vivo source tissue using immunohistochemical and transcriptional biomarkers, particularly of cellular stress. Mechanical slicing induced minimal stress. Cultivation of tumour slices required organotypic support materials and atmospheric oxygen for maintenance of integrity and was associated with significant temporal and loco-regional changes in protein expression, for example HIF-1 alpha. We recommend adherence to the robust workflow described, with recognition of temporal-spatial changes in protein expression before interrogation of tumour slices by pharmacological or other means.
  • Ajdary, Rubina; Reyes, Guillermo; Kuula, Jani; Raussi-Lehto, Eija; Mikkola, Tomi S.; Kankuri, Esko; Rojas, Orlando J. (2022)
    Direct ink writing via single or multihead extrusion is used to synthesize layer-by-layer (LbL) meshes comprising renewable polysaccharides. The best mechanical performance (683 ± 63 MPa modulus and 2.5 ± 0.4 MPa tensile strength) is observed for 3D printed structures with full infill density, given the role of electrostatic complexation between the oppositely charged components (chitosan and cellulose nanofibrils). The LbL structures develop an unexpectedly high wet stability that undergoes gradual weight loss at neutral and slightly acidic pH. The excellent biocompatibility and noncytotoxicity toward human monocyte/macrophages and controllable shrinkage upon solvent exchange make the cellular meshes appropriate for use as biomedical implants.
  • Kari, Otto K.; Ndika, Joseph; Parkkila, Petteri; Louna, Antti; Lajunen, Tatu; Puustinen, Anne; Viitala, Tapani; Alenius, Harri; Urtti, Arto (2020)
    Methodological constraints have limited our ability to study protein corona formation, slowing nanomedicine development and their successful translation into the clinic. We determined hard and soft corona structural properties along with the corresponding proteomic compositions on liposomes in a label-free workflow: surface plasmon resonance and a custom biosensor for in situ structure determination on liposomes and corona separation, and proteomics using sensitive nanoliquid chromatography tandem mass spectrometry with open-source bioinformatics platforms. Undiluted human plasma under dynamic flow conditions was used for in vivo relevance. Proof-of-concept is presented with a regular liposome formulation and two light-triggered indocyanine green (ICG) liposome formulations in preclinical development. We observed formulation-dependent differences in corona structure (thickness, protein-to-lipid ratio, and surface mass density) and protein enrichment. Liposomal lipids induced the enrichment of stealth-mediating apolipoproteins in the hard coronas regardless of pegylation, and their preferential enrichment in the soft corona of the pegylated liposome formulation with ICG was observed. This suggests that the soft corona of loosely interacting proteins contributes to the stealth properties as a component of the biological identity modulated by nanomaterial surface properties. The workflow addresses significant methodological gaps in biocorona research by providing truly complementary hard and soft corona compositions with corresponding in situ structural parameters for the first time. It has been designed into a convenient and easily reproducible single-experiment format suited for preclinical development of lipid nanomedicines.
  • Luebtow, Michael M.; Oerter, Sabrina; Quader, Sabina; Jeanclos, Elisabeth; Cubukova, Alevtina; Krafft, Marion; Haider, Malik Salman; Schulte, Clemens; Meier, Laura; Rist, Maximilian; Sampetrean, Oltea; Kinoh, Hiroaki; Gohla, Antje; Kataoka, Kazunori; Appelt-Menzel, Antje; Luxenhofer, Robert (2020)
    Inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase of the family of statins have been suggested as therapeutic options in various tumors. Atorvastatin is a statin with the potential to cross the blood-brain barrier; however, the concentrations necessary for a cytotoxic effect against cancer cells exceed the concentrations achievable via oral administration, which made the development of a novel atorvastatin formulation necessary. We characterized the drug loading and basic physicochemical characteristics of micellar atorvastatin formulations and tested their cytotoxicity against a panel of different glioblastoma cell lines. In addition, activity against tumor spheroids formed from mouse glioma and mouse cancer stem cells, respectively, was evaluated. Our results show good activity of atorvastatin against all tested cell lines. Interestingly, in the three-dimensional (3D) models, growth inhibition was more pronounced for the micellar formulation compared to free atorvastatin. Finally, atorvastatin penetration across a blood-brain barrier model obtained from human induced-pluripotent stem cells was evaluated. Our results suggest that the presented micelles may enable much higher serum concentrations than possible by oral administration; however, if transport across the blood-brain barrier is sufficient to reach the therapeutic atorvastatin concentration for the treatment of glioblastoma via intravenous administration remains unclear.
  • Dissanayake, Keerthie; Nõmm, Monika; Lättekivi, Freddy; Ressaissi, Yosra; Godakumara, Kasun; Lavrits, Arina; Midekessa, Getnet; Viil, Janeli; Bæk, Rikke; Jørgensen, Malene Møller; Bhattacharjee, Sourav; Andronowska, Aneta; Salumets, Andres; Jaakma, Ülle; Fazeli, Alireza (2020)
    Extracellular vesicles (EVs) are membrane-bound biological nanoparticles (NPs) and have gained wide attention as potential biomarkers. We aimed to isolate and characterize EVs from media conditioned by individually cultured preimplantation bovine embryos and to assess their relationship with embryo quality. Presumptive zygotes were cultured individually in 60 μl droplets of culture media, and 50 μl of media were collected from the droplets either on day 2, 5 or 8 post-fertilization. After sampling, the embryo cultures were continued in the remaining media until day 8, and the embryo development was evaluated at day 2 (cleavage), day 5 (morula stage) and day 8 (blastocyst stage). EVs were isolated using qEVsingle® columns and characterized. Based on EV Array, EVs isolated from embryo conditioned media were strongly positive for EV-markers CD9 and CD81 and weakly positive for CD63 and Alix among others. They had a cup-like shape typical to EVs as analyzed by transmission electron microscopy and spherical shape in scanning electron microscopy, and hence regarded as EVs. However, the NPs isolated from control media were negative for EV markers. Based on nanoparticle tracking analysis, at day 2, the mean concentration of EVs isolated from media conditioned by embryos that degenerated after cleaving (8.25 × 108/ml) was higher compared to that of embryos that prospectively developed to blastocysts (5.86 × 108/ml, p 
  • Rumyantsev, Konstantin A.; Turoverov, Konstantin K.; Verkhusha, Vladislav (2016)
    Bioluminescence imaging became a widely used technique for noninvasive study of biological processes in small animals. Bioluminescent probes with emission in near-infrared (NIR) spectral region confer the advantage of having deep tissue penetration capacity. However, there are a very limited number of currently available luciferases that exhibit NIR bioluminescence. Here, we engineered two novel chimeric probes based on RLuc8 luciferase fused with iRFP670 and iRFP720 NIR fluorescent proteins. Due to an intramolecular bioluminescence resonance energy transfer (BRET) between RLuc8 and iRFPs, the chimeric luciferases exhibit NIR bioluminescence with maxima at 670 nm and 720 nm, respectively. The 50 nm spectral shift between emissions of the two iRFP chimeras enables combined multicolor bioluminescence imaging (BLI) and the respective multicolor fluorescence imaging (FLI) of the iRFPs. We show that for subcutaneously implanted cells, NIR bioluminescence provided a 10-fold increase in sensitivity compared to NIR FLI. In deep tissues, NIR BLI enabled detection of as low as 10(4) cells. Both BLI and FLI allowed monitoring of tumor growth and metastasis from early to late stages. Multimodal imaging, which combines concurrent BLI and FLI, provides continuous spatiotemporal analysis of metastatic cells in animals, including their localization and quantification.
  • Yatkin, Emrah; Polari, Lauri; Laajala, Teemu D.; Smeds, Annika; Eckerman, Christer; Holmbom, Bjarne; Saarinen, Niina M.; Aittokallio, Tero; Makela, Sari I. (2014)
  • Zhang, Yuezhou; Xhaard, Henri; Ghemtio, Leo (2018)
    Betulin derivatives have been proven effective in vitro against Leishmania donovani amastigotes, which cause visceral leishmaniasis. Identifying the molecular targets and molecular mechanisms underlying their action is a currently an unmet challenge. In the present study, we tackle this problem using computational methods to establish properties essential for activity as well as to screen betulin derivatives against potential targets. Recursive partitioning classification methods were explored to develop predictive models for 58 diverse betulin derivatives inhibitors of L. donovani amastigotes. The established models were validated on a testing set, showing excellent performance. Molecular fingerprints FCFP_6 and ALogP were extracted as the physicochemical properties most extensively involved in separating inhibitors from non-inhibitors. The potential targets of betulin derivatives inhibitors were predicted by in silico target fishing using structure-based pharmacophore searching and compound-pharmacophore-targetpathway network analysis, first on PDB and then among L. donovani homologs using a PSI-BLAST search. The essential identified proteins are all related to protein kinase family. Previous research already suggested members of the cyclin-dependent kinase family and MAP kinases as Leishmania potential drug targets. The PSI-BLAST search suggests two L. donovani proteins to be especially attractive as putative betulin target, heat shock protein 83 and membrane transporter D1.