Browsing by Subject "VLP"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Kaikkonen, Laura; Enberg, Sara; Blomster, Jaanika; Luhtanen, Anne-Mari; Autio, Riitta; Rintala, Janne-Markus (Springer Nature, 2020)
    Polar Biology 43 9 (2020)
    Marine microbial communities undergo drastic changes during the seasonal cycle in high latitude seas. Despite the dominance of microbial biomass in the oceans, comprehensive studies on the seasonal changes of microbial plankton during the complete winter period are lacking. To study the seasonal variation in abundance of the microbial community, water samples were collected weekly in the Northern Baltic Sea from October to May. During ice cover from mid-January to April, samples from the sea ice and the underlying water were taken in addition to the water column samples. Abundances of bacteria, virus-like particles, nanoflagellates, and chlorophyll a concentrations were measured from sea ice, under-ice water, and the water column, and examined in relation to environmental conditions. All studied organisms had clear seasonal changes in abundance, and the sea-ice microbial community had an independent wintertime development compared to the water column. Bacteria were observed to have a key role in the biotic interactions in both ice and the water column, and the dormant period during the cold-water months (October–May) was limited to before ice formation. Our results provide the first insights into the temporal dynamics of bacteria and viruses during the whole cold-water season (October–May) in coastal high latitude seas, and demonstrate that changes in the environmental conditions are likely to affect bacterial dynamics and have implications on trophic interactions.
  • Järvinen, Valtteri (Helsingin yliopisto, 2015)
    Great concern is to be addressed to safety measures in order to guarantee work safety when studying novel, possibly pandemic influenza A viruses. These safety measures slow down the research process and their upkeep is expensive. To overcome these hindrances a virus-like-particle (VLP) can be used as a model to replace the need for a live virus. Because VLPs are non-infectious, they are suitable for being used in research where experiments are done with slighter safety precautions. In addition, VLPs are usually highly immunogenic and thus influenza A VLP may function as a model system for further vaccine development. This research was done in a research group, in which a VLP had previously been made with cloning the genes of hemagglutinin (HA), neuraminidase (NA) and matrix 1 (M1) proteins from the year 2009 pandemic Influenza A virus (H1N1)v to a single baculovirus protein expression vector. During this earlier research project it was found problematic that the expression level of a particular gene could not be controlled. In this research, HA, NA and M1 genes were cloned to different baculovirus protein expression vectors so that the expression level of individual genes could be enhanzed with plaque purification and the multiplicity of infection (MOI) adjusted individually for each vector. It was hypothesized that an optimal configuration of MOI rates between vectors could be found in order to maximise VLP production in Spodoptera frugiperda 9 (Sf9) cells. Baculovirus protein expression vectors were made via traditional cloning of the HA, NA and M1 genes into three pAcYM1 baculovirus transfer vectors under polyhedrin promoter, which has been shown to be a strong promoter. Transfer vectors were used to transfer the genes into linearised baculovirus’ genomes by homologous recombination and the genomes were transfected into Sf9 cells to produce recombinant baculoviruses. These expression vectors were plaque-purified and their titers were amplified. Their expression level was studied using SDS-PAGE and coomassie blue analysis and with metabolic labeling using [S35]-labeled methionine. The formation of VLPs was measured with hemagglutination assay when Sf9 cells were co-infected with all three protein expression vectors. It was found that changing expression vectors MOI between 1, 3 and 5 did not have a great impact on protein expression from individual vectors. The presence of NA protein was found to be necessary for the formation of influenza A virus VLPs with a detectable hemagglutination activity. Differences between VLP formations were obtained when MOI rate compositions were changed, but further study is needed to find the significance of this result. The research to find an optimal configuration of MOI rates between vectors is still to be continued.