Browsing by Subject "VOC-sensitivity coefficient"

Sort by: Order: Results:

Now showing items 1-1 of 1
  • Yang, Yuan; Wang, Yonghong; Yao, Dan; Zhao, Shuman; Yang, Shuanghong; Ji, Dongsheng; Sun, Jie; Wang, Yinghong; Liu, Zirui; Hu, Bo; Zhang, Renjian; Wang, Yuesi (2020)
    To what extent anthropogenic emissions could influence volatile organic compound (VOCs) concentrations and related atmospheric reactivity is still poorly understood. China's 70th National Day holidays, during which anthropogenic emissions were significantly reduced to ensure good air quality on Anniversary Day, provides a unique opportunity to investigate these processes. Atmospheric oxidation capacity (AOC), OH reactivity, secondary transformation, O-3 formation and VOCs-PM2.5 sensitivity are evaluated based on parameterization methods and simultaneous measurements of VOCs, O-3, NOx, CO, SO2, PM2.5, JO(1)D, JNO(2), JNO(3) carried out at a suburban site between Beijing and Tianjin before, during, and after the National Day holiday 2019. During the National Day holidays, the AOC, OH reactivity, O-3 formation potential (OFP) and secondary organic aerosol formation potential (SOAP) were 1.6 x 10(7) molecules cm(-3) s(-1), 41.8 s(-1), 299.2 mg cm(-3) and 1471.8 mg cm(-3), respectively, which were 42%, 29%, 47% and 42% lower than pre-National Day values and -12%, 42%, 36% and 42% lower than post-National Day values, respectively. Reactions involving OH radicals dominated the AOC during the day, but OH radicals and O-3 reactions at night. Alkanes (the degree of unsaturation = 0, (D, Equation (1)) accounted for the largest contributions to the total VOCs concentration, oxygenated VOCs (OVOCs; D