Sort by: Order: Results:

Now showing items 1-5 of 5
  • Kaipainen, Aku L.; Pitkänen, Johanna; Haapalinna, Fanni; Jääskeläinen, Olli; Jokinen, Hanna; Melkas, Susanna; Erkinjuntti, Timo; Vanninen, Ritva; Koivisto, Anne M.; Lötjönen, Jyrki; Koikkalainen, Juha; Herukka, Sanna-Kaisa; Julkunen, Valtteri (2021)
    Purpose Automated analysis of neuroimaging data is commonly based on magnetic resonance imaging (MRI), but sometimes the availability is limited or a patient might have contradictions to MRI. Therefore, automated analyses of computed tomography (CT) images would be beneficial. Methods We developed an automated method to evaluate medial temporal lobe atrophy (MTA), global cortical atrophy (GCA), and the severity of white matter lesions (WMLs) from a CT scan and compared the results to those obtained from MRI in a cohort of 214 subjects gathered from Kuopio and Helsinki University Hospital registers from 2005 - 2016. Results The correlation coefficients of computational measures between CT and MRI were 0.9 (MTA), 0.82 (GCA), and 0.86 (Fazekas). CT-based measures were identical to MRI-based measures in 60% (MTA), 62% (GCA) and 60% (Fazekas) of cases when the measures were rounded to the nearest full grade variable. However, the difference in measures was 1 or less in 97-98% of cases. Similar results were obtained for cortical atrophy ratings, especially in the frontal and temporal lobes, when assessing the brain lobes separately. Bland-Altman plots and weighted kappa values demonstrated high agreement regarding measures based on CT and MRI. Conclusions MTA, GCA, and Fazekas grades can also be assessed reliably from a CT scan with our method. Even though the measures obtained with the different imaging modalities were not identical in a relatively extensive cohort, the differences were minor. This expands the possibility of using this automated analysis method when MRI is inaccessible or contraindicated.
  • Mantyla, Teemu; Mantere, Outi; Raij, Tuukka T.; Kieseppa, Tuula; Laitinen, Hanna; Leiviska, Jaana; Torniainen, Minna; Tuominen, Lauri; Vaarala, Outi; Suvisaari, Jaana (2015)
    First-episode psychosis (FEP) is associated with inflammatory and brain structural changes, but few studies have investigated whether systemic inflammation associates with brain structural changes in FEP. Thirty-seven FEP patients (median 27 days on antipsychotic medication), and 19 matched controls were recruited. Serum levels of 38 chemokines and cytokines, and cardiovascular risk markers were measured at baseline and 2 months later. We collected T1-and diffusion-weighted MRIs with a 3 T scanner from the patients at baseline. We analyzed the association of psychosis-related inflammatory markers with gray and white matter (WM) volume using voxel-based morphometry and WM diffusion using tract-based spatial statistics with whole-brain and region-of-interest (ROI) analyses. FEP patients had higher CCL22 and lower TGFa, CXCL1, CCL7, IFN-alpha 2 and ApoA-I than controls. CCL22 decreased significantly between baseline and 2 months in patients but was still higher than in controls. The association between inflammatory markers and FEP remained significant after adjusting for age, sex, smoking and BMI. We did not observe a correlation of inflammatory markers with any symptoms or duration of antipsychotic treatment. Baseline CCL22 levels correlated negatively with WM volume and positively with mean diffusivity and radial diffusivity bilaterally in the frontal lobes in ROI analyses. Decreased serum lan association between circulating chemokine levels and WM in FEP patients. Interestingly, CCL22 has been previously implicated in autoimmune diseases associated with WM pathology. The results suggest that an altered activation of innate immunity may contribute to WM damage in psychotic disorders.evel of ApoA-I was associated with smaller volume of the medial temporal WM. In whole-brain analyses, CCL22 correlated positively with mean diffusivity and radial diffusivity, and CXCL1 associated negatively with fractional anisotropy and positively with mean diffusivity and radial diffusivity in several brain regions. This is the first report to demonstrate
  • Hämäläinen, Sini; Joutsa, Juho; Sihvonen, Aleksi J.; Leminen, Alina; Lehtonen, Minna (2018)
    Bilingualism is a sustained experience associated with structural changes in cortical grey matter (GM) morphology. Apart from a few studies, a dominant method used to assess bilingualism-induced GM changes has been the voxel-based morphometry (VBM) analysis. While VBM is sensitive to GM volume/density differences in general, it cannot be used to identify whether the observed difference is due to relative changes in, e.g., cortical thickness, area or folding, as it uses a single combined measure of them all. Here, we used surface-based analysis (SBA) approach to investigate whether early acquisition of a second language (L2) affects the cortical GM morphology relative to late L2 acquisition. More specifically, our aim was to test a hypothesis that early acquisition of two languages induces GM changes that are predominantly surface area-driven, while late acquisition is supposedly characterised with primarily thickness-driven changes. To this end, several surface-based measures were concurrently compared between the groups. In line with the hypothesis, the results revealed that early bilingual experience is associated with significantly extended cortical surface area over the left pars opercularis and the right superior temporal gyrus. Contrary to our expectations, however, we found no evidence supporting the postulated association between late L2 acquisition and increased cortical thickness. Nevertheless, our study highlights the importance of including cortical surface measures when investigating bilingualism related GM modulations.
  • Kraus, Christoph; Castrén, Eero; Kasper, Siegfried; Lanzenberger, Rupert (2017)
    Serotonin modulates neuroplasticity, especially during early life, and dysfunctions in both systems likewise contribute to pathophysiology of depression. Recent findings demonstrate that serotonin reuptake inhibitors trigger reactivation of juvenile-like neuroplasticity. How these findings translate to clinical antidepressant treatment in major depressive disorder remains unclear. With this review, we link preclinical with clinical work on serotonin and neuroplasticity to bring two pathophysiologic models in clinical depression closer together. Dysfunctional developmental plasticity impacts on later-life cognitive and emotional functions, changes of synaptic serotonin levels and receptor levels are coupled with altered synaptic plasticity and neurogenesis. Structural magnetic resonance imaging in patients reveals disease-state-specific reductions of gray matter, a marker of neuroplasticity, and reversibility upon selective serotonin reuptake inhibitor treatment. Translational evidence from magnetic resonance imaging in animals support that reduced densities and sizes of neurons and reduced hippocampal volumes in depressive patients could be attributable to changes of serotonergic neuroplasticity. Since ketamine, physical exercise or learning enhance neuroplasticity, combinatory paradigms with selective serotonin reuptake inhibitors could enhance clinical treatment of depression. (C) 2017 Elsevier Ltd. All rights reserved.
  • Saarinen, Aino I. L.; Huhtaniska, Sanna; Pudas, Juho; Björnholm, Lassi; Jukuri, Tuomas; Tohka, Jussi; Granö, Niklas; Barnett, Jennifer H.; Kiviniemi, Vesa; Veijola, Juha; Hintsanen, Mirka; Lieslehto, Johannes (2020)
    Objective: We conducted a multimodal coordinate-based meta-analysis (CBMA) to investigate structural and functional brain alterations in first-degree relatives of schizophrenia patients (FRs). Methods: We conducted a systematic literature search from electronic databases to find studies that examined differences between FRs and healthy controls using whole-brain functional magnetic resonance imaging (fMRI) or voxel-based morphometry (VBM). A CBMA of 30 fMRI (754 FRs; 959 controls) and 11 VBM (885 FRs; 775 controls) datasets were conducted using the anisotropic effect-size version of signed differential mapping. Further, we conducted separate meta-analyses about functional alterations in different cognitive tasks: social cognition, executive functioning, working memory, and inhibitory control. Results: FRs showed higher fMRI activation in the right frontal gyrus during cognitive tasks than healthy controls. In VBM studies, there were no differences in gray matter density between FRs and healthy controls. Furthermore, multi-modal meta-analysis obtained no differences between FRs and healthy controls. By utilizing the BrainMap database, we showed that the brain region which showed functional alterations in FRs (i) overlapped only slightly with the brain regions that were affected in the meta-analysis of schizophrenia patients and (ii) correlated positively with the brain regions that exhibited increased activity during cognitive tasks in healthy individuals. Conclusions: Based on this meta-analysis, FRs may exhibit only minor functional alterations in the brain during cognitive tasks, and the alterations are much more restricted and only slightly overlapping with the regions that are affected in schizophrenia patients. The familial risk did not relate to structural alterations in the gray matter. (C) 2019 Elsevier B.V. All rights reserved.