Browsing by Subject "WATER-BALANCE"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Ariza, Gloria Maria; Jacome, Jorge; Kotze, D. Johan (2021)
    The tropical dry forest (TDF) ecosystem is characterised by strong seasonality exasperated periodically by the El Nino/southern oscillation (ENSO). The environment produced by this event could constrain the survival of small organisms, such as insects. Carabid beetles were collected in a TDF in Armero, Colombia, during wet and dry seasons in both El Nino and non-El Nino periods. A series of traits linked to desiccation resistance were measured to characterise their adaptation to the TDF environment and to investigate changes experienced by carabid beetles during both episodes in quantitative (assemblage) and qualitative (traits) parameters. We found no difference in the presence of traits between El Nino and non-El Nino episodes, but carabid assemblages changed significantly in composition and assemblage structure between these episodes. During both periods, small-sized and nocturnal species dominated the assemblages, but in terms of number of individuals, medium and large-sized, and visual hunter species dominated. Calosoma alternans and Megacephala affinis were the most abundant species with high dispersal capacity. Carabid beetles exhibited morphological traits well-adapted to drought experienced in TDF, including when it is exasperated by ENSO. However, long-term studies can help to elucidate the real effects of ENSO and to confirm the adaptation of carabid beetles to cope with this extreme environment.
  • Maeda, Eduardo Eiji; Ma, Xuanlong; Wagner, Fabien Hubert; Kim, Hyungjun; Oki, Taikan; Eamus, Derek; Huete, Alfredo (2017)
    Evapotranspiration (ET) of Amazon forests is a main driver of regional climate patterns and an important indicator of ecosystem functioning. Despite its importance, the seasonal variability of ET over Amazon forests, and its relationship with environmental drivers, is still poorly understood. In this study, we carry out a water balance approach to analyse seasonal patterns in ET and their relationships with water and energy drivers over five sub-basins across the Amazon Basin. We used in situ measurements of river discharge, and remotely sensed estimates of terrestrial water storage, rainfall, and solar radiation. We show that the characteristics of ET seasonality in all sub-basins differ in timing and magnitude. The highest mean annual ET was found in the northern Rio Negro basin (similar to 1497 mm year(-1)) and the lowest values in the Solimoes River basin (similar to 986 mm year(-1)). For the first time in a basin-scale study, using observational data, we show that factors limiting ET vary across climatic gradients in the Amazon, confirming local-scale eddy covariance studies. Both annual mean and seasonality in ET are driven by a combination of energy and water availability, as neither rainfall nor radiation alone could explain patterns in ET. In southern basins, despite seasonal rainfall deficits, deep root water uptake allows increasing rates of ET during the dry season, when radiation is usually higher than in the wet season. We demonstrate contrasting ET seasonality with satellite greenness across Amazon forests, with strong asynchronous relationships in ever-wet watersheds, and positive correlations observed in seasonally dry watersheds. Finally, we compared our results with estimates obtained by two ET models, and we conclude that neither of the two tested models could provide a consistent representation of ET seasonal patterns across the Amazon.
  • Lopez, Jose Gutierrez; Tor-Ngern, Pantana; Oren, Ram; Kozii, Nataliia; Laudon, Hjalmar; Hasselquist, Niles J. (2021)
    Trees in northern latitude ecosystems are projected to experience increasing drought stress as a result of rising air temperatures and changes in precipitation patterns in northern latitude ecosystems. However, most drought-related studies on high-latitude boreal forests (>50 degrees N) have been conducted in North America, with few studies quantifying the response in European and Eurasian boreal forests. Here, we tested how daily whole-tree transpiration (Q, Liters day(-1)) and Q normalized for mean daytime vapor pressure deficit (Q(DZ), Liters day(-1) kPa(-1)) were affected by the historic 2018 drought in Europe. More specifically, we examined how tree species, size, and topographic position affected drought response in high-latitude mature boreal forest trees. We monitored 30 Pinus sylvestris (pine) and 30 Picea abies (spruce) trees distributed across a topographic gradient in northern Sweden. In general, pine showed a greater Q(DZ) control compared to spruce during periods of severe drought (standardized precipitation-evapotranspiration index: SPEI <-1.5), suggesting that the latter are more sensitive to drought. Overall, Q(DZ) reductions (using non-drought Q(DZ) as reference) were less pronounced in larger trees during severe drought, but there was a species-specific pattern: Q(DZ) reductions were greater in pine trees at high elevations and greater in spruce trees at lower elevations. Despite lower Q(DZ) during severe drought, drought spells were interspersed with small precipitation events and overcast conditions, and Q(DZ) returned to pre-drought conditions relatively quickly. This study highlights unique species-specific responses to drought, which are additionally driven by a codependent interaction among tree size, relative topographic position, and unique regional climate conditions.
  • Laurén, Annamari (Ari); Guan, Mingfu; Salmivaara, Aura; Leinonen, Antti; Palviainen, Marjo; Launiainen, Samuli (2021)
    Responsible forest management requires accounting for adverse environmental effects, such as increased nutrient export to water courses. We constructed a spatially-distributed nutrient balance model NutSpaFHy that extends the hydrological model SpaFHy by introducing a grid-based nutrient balance sub-model and a conceptual solute transport routine to approximate total nitrogen (N) and phosphorus (P) export to streams. NutSpaFHy uses openly-available Multi-Source National Forest Inventory data, soil maps, topographic databases, location of water bodies, and meteorological variables as input, and computes nutrient processes in monthly time-steps. NutSpaFHy contains two calibrated parameters both for N and P, which were optimized against measured N and P concentrations in runoff from twelve forested catchments distributed across Finland. NutSpaFHy was independently tested against six catchments. The model produced realistic nutrient exports. For one catchment, we simulated 25 scenarios, where clear-cuts were located differently with respect to distance to water body, location on mineral or peat soil, and on sites with different fertility. Results indicate that NutSpaFHy can be used to identify current and future nutrient export hot spots, allowing comparison of logging scenarios with variable harvesting area, location and harvest techniques, and to identify acceptable scenarios that preserve the wood supply whilst maintaining acceptable level of nutrient export.
  • Göckede, Mathias; Kittler, Fanny; Kwon, Min Jung; Burjack, Ina; Heimann, Martin; Kolle, Olaf; Zimov, Nikita; Zimov, Sergey (2017)
    Hydrologic conditions are a key factor in Arctic ecosystems, with strong influences on ecosystem structure and related effects on biogeophysical and biogeochemical processes. With systematic changes in water availability expected for large parts of the northern high-latitude region in the coming centuries, knowledge on shifts in ecosystem functionality triggered by altered water levels is crucial for reducing uncertainties in climate change predictions. Here, we present findings from paired ecosystem observations in northeast Siberia comprising a drained and a control site. At the drainage site, the water table has been artificially lowered by up to 30 cm in summer for more than a decade. This sustained primary disturbance in hydrologic conditions has triggered a suite of secondary shifts in ecosystem properties, including vegetation community structure, snow cover dynamics, and radiation budget, all of which influence the net effects of drainage. Reduced thermal conductivity in dry organic soils was identified as the dominating drainage effect on energy budget and soil thermal regime. Through this effect, reduced heat transfer into deeper soil layers leads to shallower thaw depths, initially leading to a stabilization of organic permafrost soils, while the long-term effects on permafrost temperature trends still need to be assessed. At the same time, more energy is transferred back into the atmosphere as sensible heat in the drained area, which may trigger a warming of the lower atmospheric surface layer.