Browsing by Subject "WILD-TYPE"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Vegh, Russell B.; Bravaya, Ksenia B.; Bloch, Dmitry A.; Bommarius, Andreas S.; Tolbert, Laren M.; Verkhovsky, Michael; Krylov, Anna I.; Solntsev, Kyril M. (2014)
  • Birkman, Eva-Maria; Avoranta, Tuulia; Algars, Annika; Korkeila, Eija; Lintunen, Minnamaija; Lahtinen, Laura; Kuopio, Teijo; Ristamäki, Raija; Carpen, Olli; Sundström, Jari (2018)
    Epidermal growth factor receptor (EGFR) gene copy number (GCN) increase is associated with a favorable anti-EGFR antibody treatment response in RAS wild-type metastatic colorectal cancer. However, there are limited and comparative data regarding the EGFR GCN in primary colorectal cancer tumors and corresponding metastases or the effect of anti-EGFR antibody treatment on EGFR GCN in recurrent disease. In addition, little is known about the potential EGFR GCN changes during anti-EGFR therapy in comparison with other treatment regimens. EGFR GCN was analyzed by EGFR immunohistochemistry-guided silver in situ hybridization in primary and corresponding recurrent local or metastatic tumors from 80 colorectal cancer patients. GCN levels were compared between KRAS wild-type patients having received antiEGFR therapy and patients having received other forms of treatment after primary surgery. The EGFR GCN decrease between primary and recurrent tumors was more pronounced among the anti EGFR-treated patients than among patients not treated with anti-EGFR therapy (P=.047). None of the patients experiencing an EGFR GCN increase of at least 1.0 between the primary and recurrent tumors were treated with antiEGFR antibodies. When including only patients with distant metastases, an EGFR GCN decrease of at least 1.0 was more common among the anti EGFR-treated patients than among patients not treated with anti-EGFR therapy (P=.028). Our results suggest that anti-EGFR antibody treatment is associated with EGFR GCN decrease between the primary and recurrent colorectal adenocarcinomas, whereas no GCN change is observed among patients receiving other forms of treatment after primary surgery. (C) 2018 The Authors. Published by Elsevier Inc.
  • Ihle, Michaela Angelika; Huss, Sebastian; Jeske, Wiebke; Hartmann, Wolfgang; Merkelbach-Bruse, Sabine; Schildhaus, Hans-Ulrich; Büttner, Reinhard; Sihto, Harri; Hall, Kirsten Sundby; Eriksson, Mikael; Reichardt, Peter; Joensuu, Heikki; Wardelmann, Eva (2018)
    Despite of multitude investigations no reliable prognostic immunohistochemical biomarkers in GIST have been established so far with added value to predict the recurrence risk of high risk GIST besides mitotic count, primary location and size. In this study, we analyzed the prognostic relevance of eight cell cycle and apoptosis modulators and of TP53 mutations for prognosis in GIST with high risk of recurrence prior to adjuvant treatment with imatinib. In total, 400 patients with high risk for GIST recurrence were randomly assigned for adjuvant imatinib either for one or for three years following laparotomy. 320 primary tumor samples with available tumor tissue were immunohistochemically analyzed prior to treatment for the expression of cell cycle regulators and apoptosis modulators cyclin D1, p21, p16, CDK4, E2F1, MDM2, p53 and p-RB1. TP53 mutational analysis was possible in 245 cases. A high expression of CDK4 was observed in 32.8% of all cases and was associated with a favorable recurrence free survival (RFS), whereas high expression of MDM2 (12.2%) or p53 (35.3%) was associated with a shorter RFS. These results were independent from the primary KIT or PDGFRA mutation. In GISTs with higher mitotic counts was a significantly increased expression of cyclin D1, p53 and E2F1. The expression of p16 and E2F1 significantly correlated to a non-gastric localization. Furthermore, we observed a significant higher expression of p21 and E2F1 in KIT mutant GISTs compared to PDGFRA mutant and wt GISTs. The overall frequency of TP53 mutations was low (n = 8; 3.5%) and could not be predicted by the immunohistochemical expression of p53. In summary, mutation analysis in TP53 plays a minor role in the subgroup of high-risk GIST before adjuvant treatment with imatinib. Strong expression of MDM2 and p53 correlated with a shorter recurrence free survival, whereas a strong expression of CDK4 correlated to a better recurrence free survival.
  • Mäntynen, Sari; Sundberg , Lotta-Riina; Oksanen, Hanna Maarit; Poranen, Minna Marjetta (2019)
    Half a century of research on membrane-containing phages has had a major impact on virology, providing new insights into virus diversity, evolution and ecological importance. The recent revolutionary technical advances in imaging, sequencing and lipid analysis have significantly boosted the depth and volume of knowledge on these viruses. This has resulted in new concepts of virus assembly, understanding of virion stability and dynamics, and the description of novel processes for viral genome packaging and membrane-driven genome delivery to the host. The detailed analyses of such processes have given novel insights into DNA transport across the protein-rich lipid bilayer and the transformation of spherical membrane structures into tubular nanotubes, resulting in the description of unexpectedly dynamic functions of the membrane structures. Membrane-containing phages have provided a framework for understanding virus evolution. The original observation on membrane-containing bacteriophage PRD1 and human pathogenic adenovirus has been fundamental in delineating the concept of viral lineages, postulating that the fold of the major capsid protein can be used as an evolutionary fingerprint to trace long-distance evolutionary relationships that are unrecognizable from the primary sequences. This has brought the early evolutionary paths of certain eukaryotic, bacterial, and archaeal viruses together, and potentially enables the reorganization of the nearly immeasurable virus population (similar to 1 x 10(31)) on Earth into a reasonably low number of groups representing different architectural principles. In addition, the research on membrane-containing phages can support the development of novel tools and strategies for human therapy and crop protection.
  • Azinas, S.; Bano, F.; Torca, I.; Bamford, D. H.; Schwartz, G. A.; Esnaola, J.; Oksanen, H. M.; Richter, R. P.; Abrescia, N. G. (2018)
    The protection of the viral genome during extracellular transport is an absolute requirement for virus survival and replication. In addition to the almost universal proteinaceous capsids, certain viruses add a membrane layer that encloses their double-stranded (ds) DNA genome within the protein shell. Using the membrane-containing enterobacterial virus PRD1 as a prototype, and a combination of nanoindentation assays by atomic force microscopy and finite element modelling, we show that PRD1 provides a greater stability against mechanical stress than that achieved by the majority of dsDNA icosahedral viruses that lack a membrane. We propose that the combination of a stiff and brittle proteinaceous shell coupled with a soft and compliant membrane vesicle yields a tough composite nanomaterial well-suited to protect the viral DNA during extracellular transport.
  • Rantamäki, Tomi; Kemppainen, Susanna; Autio, Henri; Staven, Saara; Koivisto, Hennariikka; Kojima, Masami; Antila, Hanna; Miettinen, Pasi O.; Kärkkäinen, Elisa; Karpova, Nina; Vesa, Liisa; Lindemann, Lothar; Hoener, Marius C.; Tanila, Heikki; Castren, Eero (2013)