Browsing by Subject "WIND-SPEED"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Morgan, Eric J.; Lavric, Jost V.; Arevalo-Martinez, Damian L.; Bange, Hermann W.; Steinhoff, Tobias; Seifert, Thomas; Heimann, Martin (2019)
    Ground-based atmospheric observations of CO2, delta(O-2/N-2), N2O, and CH4 were used to make estimates of the air-sea fluxes of these species from the Luderitz and Walvis Bay upwelling cells in the northern Benguela region, during upwelling events. Average flux densities (+/- 1 sigma) were 0:65 +/- 0:4 mu mol m(-2) s(-1) for CO2, -5.1 +/- 2:5 mu mol m(-2) s(-1) for O-2 (as APO), 0:61 +/- 0:5 nmol m(-2) s(-1) for N2O, and 4:8 +/- 6:3 nmol m(-2)s(-1) for CH4. A comparison of our top-down (i.e., inferred from atmospheric anomalies) flux estimates with shipboard-based measurements showed that the two approaches agreed within +/- 55% on average, though the degree of agreement varied by species and was best for CO2. Since the top-down method overestimated the flux density relative to the shipboard-based approach for all species, we also present flux density estimates that have been tuned to best match the shipboard fluxes. During the study, upwelling events were sources of CO2, N2O, and CH4 to the atmosphere. N2O fluxes were fairly low, in accordance with previous work suggesting that the evasion of this gas from the Benguela is smaller than for other eastern boundary upwelling systems (EBUS). Conversely, CH4 release was quite high for the marine environment, a result that supports studies that indicated a large sedimentary source of CH4 in the Walvis Bay area. These results demonstrate the suitability of atmospheric time series for characterizing the temporal variability of upwelling events and their influence on the overall marine greenhouse gas (GHG) emissions from the northern Benguela region.
  • Leinonen, Ville; Kokkola, Harri; Yli-Juuti, Taina; Mielonen, Tero; Kühn, Thomas; Nieminen, Tuomo; Heikkinen, Simo; Miinalainen, Tuuli; Bergman, Tommi; Carslaw, Ken; Decesari, Stefano; Fiebig, Markus; Hussein, Tareq; Kivekäs, Niku; Krejci, Radovan; Kulmala, Markku; Leskinen, Ari; Massling, Andreas; Mihalopoulos, Nikos; Mulcahy, Jane P.; Noe, Steffen M.; van Noije, Twan; O'Connor, Fiona M.; O'Dowd, Colin; Olivie, Dirk; Pernov, Jakob B.; Petäjä, Tuukka; Seland, Øyvind; Schulz, Michael; Scott, Catherine E.; Skov, Henrik; Swietlicki, Erik; Tuch, Thomas; Wiedensohler, Alfred; Virtanen, Annele; Mikkonen, Santtu (2022)
    Despite a large number of studies, out of all drivers of radiative forcing, the effect of aerosols has the largest uncertainty in global climate model radiative forcing estimates. There have been studies of aerosol optical properties in climate models, but the effects of particle number size distribution need a more thorough inspection. We investigated the trends and seasonality of particle number concentrations in nucleation, Aitken, and accumulation modes at 21 measurement sites in Europe and the Arctic. For 13 of those sites, with longer measurement time series, we compared the field observations with the results from five climate models, namely EC-Earth3, ECHAM-M7, ECHAM-SALSA, NorESM1.2, and UKESM1. This is the first extensive comparison of detailed aerosol size distribution trends between in situ observations from Europe and five earth system models (ESMs). We found that the trends of particle number concentrations were mostly consistent and decreasing in both measurements and models. However, for many sites, climate models showed weaker decreasing trends than the measurements. Seasonal variability in measured number concentrations, quantified by the ratio between maximum and minimum monthly number concentration, was typically stronger at northern measurement sites compared to other locations. Models had large differences in their seasonal representation, and they can be roughly divided into two categories: for EC-Earth and NorESM, the seasonal cycle was relatively similar for all sites, and for other models the pattern of seasonality varied between northern and southern sites. In addition, the variability in concentrations across sites varied between models, some having relatively similar concentrations for all sites, whereas others showed clear differences in concentrations between remote and urban sites. To conclude, although all of the model simulations had identical input data to describe anthropogenic mass emissions, trends in differently sized particles vary among the models due to assumptions in emission sizes and differences in how models treat size-dependent aerosol processes. The inter-model variability was largest in the accumulation mode, i.e. sizes which have implications for aerosol-cloud interactions. Our analysis also indicates that between models there is a large variation in efficiency of long-range transportation of aerosols to remote locations. The differences in model results are most likely due to the more complex effect of different processes instead of one specific feature (e.g. the representation of aerosol or emission size distributions). Hence, a more detailed characterization of microphysical processes and deposition processes affecting the long-range transport is needed to understand the model variability.
  • Heiskanen, Jouni J.; Mammarella, Ivan; Haapanala, Sami; Pumpanen, Jukka; Vesala, Timo; Macintyre, Sally; Ojala, Anne (2014)
  • Rovelli, L.; Attard, K. M.; Heppell, C. M.; Binley, A.; Trimmer, M.; Glud, R. N. (2018)
    Headwater streams are important in the carbon cycle and there is a need to better parametrize and quantify exchange of carbon-relevant gases. Thus, we characterized variability in the gas exchange coefficient (k(2)) and dissolved oxygen (O-2) gas transfer velocity (k) in two lowland headwaters of the River Avon (UK). The traditional one-station open-water method was complemented by in situ quantification of riverine sources and sinks of O-2 (i.e., groundwater inflow, photosynthesis, and respiration in both the water column and benthic compartment) enabling direct hourly estimates of k(2) at the reach-scale (similar to 150 m) without relying on the nighttime regression method. Obtained k(2) values ranged from 0.001 h(-1) to 0.600 h(-1). Average daytime k(2) were a factor two higher than values at night, likely due to diel changes in water temperature and wind. Temperature contributed up to 46% of the variability in k on an hourly scale, but clustering temperature incrementally strengthened the statistical relationship. Our analysis suggested that k variability is aligned with dominant temperature trends rather than with short-term changes. Similarly, wind correlation with k increased when clustering wind speeds in increments correspondent with dominant variations (1 m s(-1)). Time scale is thus an important consideration when resolving physical drivers of gas exchange. Mean estimates of k(600) from recent parametrizations proposed for upscaling, when applied to the settings of this study, were found to be in agreement with our independent O-2 budget assessment (within <10%), adding further support to the validity of upscaling efforts aiming at quantifying large-scale riverine gas emissions.
  • Norris, S. J.; Brooks, I. M.; Moat, B. I.; Yelland, M. J.; de Leeuw, G.; Pascal, R. W.; Brooks, B. (2013)
  • Kouznetsov, Rostislav D.; Zilitinkevich, Sergej S. (2010)