Browsing by Subject "WINDOW"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Peuhu, Elina; Thomssen, Pia-Maria; Siitonen, Juha (2019)
    Hollow trees are an important habitat for a large number of saproxylic invertebrates, many of which are rare or threatened. Large old trees occur frequently in cities, but the saproxylic fauna inhabiting these trees has been poorly studied. Sampling in urban areas includes the risk of trap failure due to human interference, which needs to be considered when designing sampling. The aim of our study was to find an efficient trap type for sampling saproxylic beetles in hollow urban trees. We compared the species richness and species composition of saproxylic beetle assemblages between trunk window, aluminium foil tray and pitfall traps placed inside hollow trees in the Helsinki metropolitan area, Finland. A total of 30 traps of each trap type were set in 15 trees. The traps caught a total of 4004 saproxylic beetle individuals belonging to 131 species. Trunk window and aluminium foil traps had similar assemblage and trapping efficiency, and were significantly more efficient than pitfall traps. However, pitfall traps caught certain species more efficiently than the other two trap types. Time spent separating insects from samples was the most laborious work stage. The time increased with increasing sample weight, i.e. the amount of wood mould in the trap. Trunk windows were the most efficient trap type also in terms of saproxylic species and individuals per handling time. We conclude that saproxylic beetle fauna living in hollow urban trees can be efficiently sampled with small trunk window traps or containers placed on the inner walls of hollows.
  • Boggavarapu, Nageswara Rao; Lalitkumar, Sujata; Joshua, Vijay; Kasvandik, Sergo; Salumets, Andres; Lalitkumar, Parameswaran Grace; Gemzell-Danielsson, Kristina (2016)
    The complexity of endometrial receptivity at the molecular level needs to be explored in detail to improve the management of infertility. Here, differential expression of transcriptomes in receptive endometrial glands and stroma revealed Ectonucleotide Pyrophosphatase/Phosphodiesterase 3 (ENPP3) as a progesterone regulated factor and confirmed by various methods, both at mRNA and protein level. The involvement of ENPP3 in embryo attachment was tested in an in vitro model for human embryo implantation. Interestingly, there was high expression of ENPP3 mRNA in stroma but not protein. Presence of N-glycosylated ENPP3 in receptive phase uterine fluid in women confirms its regulation by progesterone and makes it possible to use in a non-invasive test of endometrial receptivity.