Browsing by Subject "X-RAY PHOTOELECTRON"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Popov, Georgi; Bacic, Goran; Van Dijck, Charlotte; Junkers, Laura S.; Weiss, Alexander; Mattinen, Miika; Vihervaara, Anton; Chundak, Mykhailo; Jalkanen, Pasi; Mizohata, Kenichiro; Leskela, Markku; Masuda, Jason D.; Barry, Sean T.; Ritala, Mikko; Kemell, Marianna (2022)
    Atomic layer deposition offers outstanding film uniformity and conformality on substrates with high aspect ratio features. These qualities are essential for mixed-halide perovskite films applied in tandem solar cells, transistors and light-emitting diodes. The optical and electronic properties of mixed-halide perovskites can be adjusted by adjusting the ratios of different halides. So far ALD is only capable of depositing iodine-based halide perovskites whereas other halide processes are lacking. We describe six new low temperature (
  • Lang, Adam R.; Engelberg, Dirk L.; Walther, Clemens; Weiss, Martin; Bosco, Hauke; Jenkins, Alex; Livens, Francis R.; Law, Gareth T. W. (2019)
    Stainless steels can become contaminated with radionuclides at nuclear sites. Their disposal as radioactive waste would be costly. If the nature of steel contamination could be understood, effective decontamination strategies could be designed and implemented during nuclear site decommissioning in an effort to release the steels from regulatory control. Here, batch uptake experiments have been used to understand Sr and Cs (fission product radionuclides) uptake onto AISI Type 304 stainless steel under conditions representative of spent nuclear fuel storage (alkaline ponds) and PUREX nuclear fuel reprocessing (HNO3). Solution (ICP-MS) and surface measurements (GD-OES depth profiling, TOF-SIMS, and XPS) and kinetic modeling of Sr and Cs removal from solution were used to characterize their uptake onto the steel and define the chemical composition and structure of the passive layer formed on the steel surfaces. Under passivating conditions (when the steel was exposed to solutions representative of alkaline ponds and 3 and 6 M HNO3), Sr and Cs were maintained at the steel surface by sorption/selective incorporation into the Cr-rich passive film. In 12 M HNO3, corrosion and severe intergranular attack led to Sr diffusion into the passive layer and steel bulk. In HNO3, Sr and Cs accumulation was also commensurate with corrosion product (Fe and Cr) readsorption, and in the 12 M HNO3 system, XPS documented the presence of Sr and Cs chromates.
  • Abdulagatov, Aziz I.; Sharma, Varun; Murdzek, Jessica A.; Cavanagh, Andrew S.; George, Steven M. (2021)
    The thermal atomic layer etching (ALE) of germanium-rich SiGe was demonstrated using an oxidation and "conversion-etch" mechanism with oxygen (O-2) or ozone (O-3), hydrofluoric acid (HF), and trimethylaluminum [TMA, Al(CH3)(3)] as the reactants. The crystalline germanium-rich SiGe film was prepared using physical vapor deposition and had a composition of Si0.15Ge0.85. In situ spectroscopic ellipsometry was employed to monitor the thickness of both the SiGe film and the surface oxide layer on the SiGe film during thermal ALE. Using a reactant sequence of O-2-HF-TMA, the etch rate of the SiGe film increased progressively with temperatures from 225 to 290 degrees C. At 290 degrees C, the SiGe film thickness decreased linearly at a rate of 0.57 angstrom /cycle with a surface oxide thickness of 18-19 angstrom. This etch rate was obtained using reactant pressures of 25, 0.2, and 0.4Torr and doses of 1.5, 1.0, and 1.0s for O-2, HF, and TMA, respectively. The TMA and HF reactions were self-limiting and the O-2 reaction was reasonably self-limiting at 290 degrees C. Using an O-3-HF-TMA reaction sequence, the SiGe ALE etch rate was 0.42 angstrom /cycle at 290 degrees C. This etch rate was obtained using reactant pressures of 15, 0.2, and 0.4Torr and dose times of 0.5, 1.0, and 1.0s for O-3, HF, and TMA, respectively. The O-3, TMA, and HF reactions were all self-limiting at 290 degrees C. Atomic force microscopy images revealed that thermal ALE with the O-2-HF-TMA or O-3-HF-TMA reaction sequences did not roughen the surface of the SiGe film. The SiGe film was etched selectively compared with Si or Si3N4 at 290 degrees C using an O-2-HF-TMA reaction sequence. The etch rate for the SiGe film was >10 times faster than Si(100) or Si3N4 that was prepared using low-pressure chemical vapor deposition. This selectivity for the SiGe film will be useful to fabricate Si nanowires and nanosheets using SiGe as the sacrificial layer.