Browsing by Subject "XYLEM"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Mencuccini, Maurizio; Salmon, Yann; Mitchell, Patrick; Hölttä, Teemu; Choat, Brendan; Meir, Patrick; O'Grady, Anthony; Tissue, David; Zweifel, Roman; Sevanto, Sanna; Pfautsch, Sebastian (2017)
    Substantial uncertainty surrounds our knowledge of tree stem growth, with some of the most basic questions, such as when stem radial growth occurs through the daily cycle, still unanswered. We employed high-resolution point dendrometers, sap flow sensors, and developed theory and statistical approaches, to devise a novel method separating irreversible radial growth from elastic tension-driven and elastic osmotically driven changes in bark water content. We tested this method using data from five case study species. Experimental manipulations, namely a field irrigation experiment on Scots pine and a stem girdling experiment on red forest gum trees, were used to validate the theory. Time courses of stem radial growth following irrigation and stem girdling were consistent with a-priori predictions. Patterns of stem radial growth varied across case studies, with growth occurring during the day and/or night, consistent with the available literature. Importantly, our approach provides a valuable alternative to existing methods, as it can be approximated by a simple empirical interpolation routine that derives irreversible radial growth using standard regression techniques. Our novel method provides an improved understanding of the relative source-sink carbon dynamics of tree stems at a sub-daily time scale.
  • Vesala, Timo; Sevanto, Sanna; Grönholm, Tiia; Salmon, Yann; Nikinmaa, Eero; Hari, Pertti; Hölttä, Teemu (2017)
    The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but withmuch lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/ intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flat surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO2, thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Our results indicate that the reduction in vapor pressures of water and CO2 could enhance plant water use efficiency up to about 10% at a leaf water potential of -2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. The omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO2 concentration based on leaf gas exchange measurements. Manufactures of leaf gas exchange measurement systems should incorporate leaf water potentials in measurement set-ups.
  • Chan, Tommy; Berninger, Frank; Kolari, Pasi; Nikinmaa, Eero; Hölttä, Teemu (2018)
    Current methods to study relations between stem respiration and stem growth have been hampered by problems in quantifying stem growth from dendrometer measurements, particularly on a daily time scale. This is mainly due to the water-related influences within these measurements that mask growth. A previously published model was used to remove water-related influences from measured radial stem variations to reveal a daily radial growth signal (ΔˆGm). We analysed the intra- and inter-annual relations between ΔˆGm and estimated growth respiration rates (Rg) on a daily scale for 5 years. Results showed that Rg was weakly correlated to stem growth prior to tracheid formation, but was significant during the early summer. In the late summer, the correlation decreased slightly relative to the early summer. A 1-day time lag was found of ΔˆGm preceding Rg. Using wavelet analysis and measurements from eddy covariance, it was found that Rg followed gross primary production and temperature with a 2 and 3 h time lag, respectively.This study shows that further in-depth analysis of in-situ growth and growth respiration dynamics is greatly needed, with a focus on cellular respiration at specific developmental stages, its woody tissue costs and linkages to source–sink processes and environmental drivers.
  • DeSoto, Lucia; Cailleret, Maxime; Sterck, Frank; Jansen, Steven; Kramer, Koen; Robert, Elisabeth M. R.; Aakala, Tuomas; Amoroso, Mariano M.; Bigler, Christof; Camarero, J. Julio; Cufar, Katarina; Gea-Izquierdo, Guillermo; Gillner, Sten; Haavik, Laurel J.; Heres, Ana-Maria; Kane, Jeffrey M.; Kharuk, Vyacheslav; Kitzberger, Thomas; Klein, Tamir; Levanic, Tom; Linares, Juan C.; Makinen, Harri; Oberhuber, Walter; Papadopoulos, Andreas; Rohner, Brigitte; Sanguesa-Barreda, Gabriel; Stojanovic, Dejan B.; Suarez, Maria Laura; Villalba, Ricardo; Martinez-Vilalta, Jordi (2020)
    Severe droughts have the potential to reduce forest productivity and trigger tree mortality. Most trees face several drought events during their life and therefore resilience to dry conditions may be crucial to long-term survival. We assessed how growth resilience to severe droughts, including its components resistance and recovery, is related to the ability to survive future droughts by using a tree-ring database of surviving and now-dead trees from 118 sites (22 species, >3,500 trees). We found that, across the variety of regions and species sampled, trees that died during water shortages were less resilient to previous non-lethal droughts, relative to coexisting surviving trees of the same species. In angiosperms, drought-related mortality risk is associated with lower resistance (low capacity to reduce impact of the initial drought), while it is related to reduced recovery (low capacity to attain pre-drought growth rates) in gymnosperms. The different resilience strategies in these two taxonomic groups open new avenues to improve our understanding and prediction of drought-induced mortality.
  • Tamaki, Takayuki; Oya, Satoyo; Naito, Makiko; Ozawa, Yasuko; Furuya, Tomoyuki; Saito, Masato; Sato, Mayuko; Wakazaki, Mayumi; Toyooka, Kiminori; Fukuda, Hiroo; Helariutta, Ykä; Kondo, Yuki (2020)
    The phloem transports photosynthetic assimilates and signalling molecules. It mainly consists of sieve elements (SEs), which act as "highways" for transport, and companion cells (CCs), which serve as "gates" to load/unload cargos. Though SEs and CCs function together, it remains unknown what determines the ratio of SE/CC in the phloem. Here we develop a new culture system for CC differentiation in Arabidopsis named VISUAL-CC, which almost mimics the process of the SE-CC complex formation. Comparative expression analysis in VISUAL-CC reveals that SE and CC differentiation tends to show negative correlation, while total phloem differentiation is unchanged. This varying SE/CC ratio is largely dependent on GSK3 kinase activity. Indeed, gsk3 hextuple mutants possess many more SEs and fewer CCs, whereas gsk3 gain-of-function mutants partially increase the CC number. Taken together, GSK3 activity appears to function as a cell-fate switch in the phloem, thereby balancing the SE/CC ratio. Tamaki et al. develop VISUAL-CC to study SE-CC (sieve elements-companion cells) complex formation. They show that the balance in the SE/CC ratio is dependent on GSK3 activity using different genetic backgrounds. Their work provides insights on the role of GSK3 as a cell-fate switch in the phloem.