Browsing by Subject "XYLOSE"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Watson, Victoria E.; Jacob, Megan E.; Bruno-Bárcena, José M.; Amirsultan, Sophia; Stauffer, Stephen H.; Píqueras, Victoria O.; Frias, Rafael; Gookin, Jody L. (2019)
    Typical enteropathogenic E. coli (tEPEC) carries the highest hazard of death in children with diarrhea and atypical EPEC (aEPEC) was recently identified as significantly associated with diarrheal mortality in kittens. In both children and kittens there is a significant association between aEPEC burden and diarrheal disease, however the infection can be found in individuals with and without diarrhea. It remains unclear to what extent, under what conditions, or by what mechanisms aEPEC serves as a primary pathogen in individuals with diarrhea. It seems likely that a combination of host and bacterial factors enable aEPEC to cause disease in some individuals and not in others. The purpose of this study was to determine the impact of aEPEC on intestinal function and diarrhea in kittens following experimentally-induced carriage and the influence of a disrupted intestinal microbiota on disease susceptibility. Results of this study identify aEPEC as a potential pathogen in kittens. In the absence of disruption to the intestinal microbiota, kittens are resistant to clinical signs of aEPEC carriage but demonstrate significant occult changes in intestinal absorption and permeability. Antibiotic-induced disruption of the intestinal microbiota prior to infection increases subsequent intestinal water loss as determined by % fecal wet weight. Enrichment of the intestinal microbiota with a commensal member of the feline mucosa-associated microbiota, Enterococcus hirae, ameliorated the effects of aEPEC experimental infection on intestinal function and water loss. These observations begin to unravel the mechanisms by which aEPEC infection may be able to exploit susceptible hosts.
  • Mäkelä, Miia R.; Aguilar-Pontes, Maria Victoria; van Rossen-Uffink, Diana; Peng, Mao; de Vries, Ronald P. (2018)
    In nature, the fungus Aspergillus niger degrades plant biomass polysaccharides to monomeric sugars, transports them into its cells, and uses catabolic pathways to convert them into biochemical building blocks and energy. We show that when grown in liquid cultures, A. niger takes up plant-biomass derived sugars in a largely sequential manner. Interestingly, this sequential uptake was not mediated by the fungal general carbon catabolite repressor protein CreA. Furthermore, transcriptome analysis strongly indicated that the preferential use of the monomeric sugars is arranged at the level of transport, but it is not reflected in transcriptional regulation of sugar catabolism. Therefore, the results indicate that the regulation of sugar transport and catabolism are separate processes in A. niger.
  • Linares, Nancy Coconi; Di Falco, Marcos; Benoit-Gelber, Isabelle; Gruben, Birgit S.; Peng, Mao; Tsang, Adrian; Mäkelä, Miia R.; de Vries, Ronald P. (2019)
    Guar gum consists mainly of galactomannan and constitutes the endosperm of guar seeds that acts as a reserve polysaccharide for germination. Due to its molecular structure and physical properties, this biopolymer has been considered as one of the most important and widely used gums in industry. However, for many of these applications this (hemi-) cellulosic structure needs to be modified or (partially) depolymerized in order to customize and improve its physicochemical properties. In this study, transcriptome, exoproteome and enzyme activity analyses were employed to decipher the complete enzymatic arsenal for guar gum depolymerization by Aspergillus niger. This multi-omic analysis revealed a set of 46 genes encoding carbohydrate-active enzymes (CAZymes) responding to the presence of guar gum, including CAZymes not only with preferred activity towards galactomannan, but also towards (arabino-) xylan, cellulose, starch and pectin, likely due to trace components in guar gum. This demonstrates that the purity of substrates has a strong effect on the resulting enzyme mixture produced by A. niger and probably by other fungi as well, which has significant implications for the commercial production of fungal enzyme cocktails.