Browsing by Subject "ZEBRAFISH"

Sort by: Order: Results:

Now showing items 1-18 of 18
  • He, Suxu; Ran, Chao; Qin, Chubin; Li, Shuning; Zhang, Hongling; de Vos, Willem M.; Ringo, Einar; Zhou, Zhigang (2017)
    In this study, we tested the distribution of 49 Lactobacillus strains in the mucus and mucosa of the intestine tissue of zebrafish. We observed a progressive change in the spatial distribution of Lactobacillus strains, and suggested a division of the strains into three classes: mucus type (>70% in mucus), mucosa type (>70% in mucosa) and hybrid type (others). The hybrid type strains were more efficient in protection of zebrafish against Aeromonas hydrophila infection. Three strains representing different distribution types (JCM1149, CGMCC1.2028, and JCM 20300) were selected. The mucosa type strain JCM1149 induced higher intestinal expression of inflammatory cytokines and Hsp70 than the other strains. Furthermore, we used L. rhamnosus GG and its mutant (PB22) lacking SpaCBA pili to investigate the influence of pili on spatial distribution. LGG showed a mucosa type distribution, while PB22 revealed a hybrid distribution and the disease protection was accordingly improved. The different protection ability between LGG and PB22 did not involve the intestinal microbiota, however, LGG induced injury to the mucosa of zebrafish. Collectively, the disease protection activity of Lactobacillus in zebrafish is correlated with their spatial distribution in the intestinal tissue, with strains showing a balanced distribution (hybrid type) more efficient in protection.
  • Rinne, Maiju; Tanoli, Zia-Ur-Rehman; Khan, Asifullah; Xhaard, Henri (2019)
    We conduct a cartography of rhodopsin-like non-olfactory G protein-coupled receptors in the Ensembl database. The most recent genomic data (releases 90-92, 90 vertebrate genomes) are analyzed through the online interface and receptors mapped on phylogenetic guide trees that were constructed based on a set of similar to 14.000 amino acid sequences. This snapshot of genomic data suggest vertebrate genomes to harbour 142 clades of GPCRs without human orthologues. Among those, 69 have not to our knowledge been mentioned or studied previously in the literature, of which 28 are distant from existing receptors and likely new orphans. These newly identified receptors are candidates for more focused evolutionary studies such as chromosomal mapping as well for in-depth pharmacological characterization. Interestingly, we also show that 37 of the 72 human orphan (or recently deorphanized) receptors included in this study cluster into nineteen closely related groups, which implies that there are less ligands to be identified than previously anticipated. Altogether, this work has significant implications when discussing nomenclature issues for GPCRs.
  • Hujanen, Roosa; Almahmoudi, Rabeia; Salo, Tuula; Salem, Abdelhakim (2021)
    Tissue vasculature provides the main conduit for metastasis in solid tumours including head and neck squamous cell carcinoma (HNSCC). Vascular mimicry (VM) is an endothelial cell (EC)-independent neovascularization pattern, whereby tumour cells generate a perfusable vessel-like meshwork. Yet, despite its promising clinical utility, there are limited approaches to better identify VM in HNSCC and what factors may influence such a phenomenon in vitro. Therefore, we employed different staining procedures to assess their utility in identifying VM in tumour sections, wherein mosaic vessels may also be adopted to further assess the VM-competent cell phenotype. Using 13 primary and metastatic HNSCC cell lines in addition to murine- and human-derived matrices, we elucidated the impact of the extracellular matrix, tumour cell type, and density on the formation and morphology of cell-derived tubulogenesis in HNSCC. We then delineated the optimal cell numbers needed to obtain a VM meshwork in vitro, which revealed cell-specific variations and yet consistent expression of the EC marker CD31. Finally, we proposed the zebrafish larvae as a simple and cost-effective model to evaluate VM development in vivo. Taken together, our findings offer a valuable resource for designing future studies that may facilitate the therapeutic exploitation of VM in HNSCC and other tumours.
  • Al-Samadi, Ahmed; Awad, Shady Adnan; Tuomainen, Katja; Zhao, Yue; Salem, Abdelhakim; Parikka, Mataleena; Salo, Tuula (2017)
    The crosstalk between immune cells, cancer cells, and extracellular vesicles (EVs) secreted by cancer cells remains poorly understood. We created three-dimensional (3D) cell culture models using human leiomyoma discs and Myogel to study the effects of immune cells on highly (HSC-3) and less (SCC-25) invasive oral tongue squamous cell carcinoma (OTSCC) cell lines. Additionally, we studied the effects of EVs isolated from these cell lines on the cytotoxicity of CD8(+) T and NK cells isolated from three healthy donors. Our analysis included the effects of these EVs on innate immunity in zebrafish larvae. Activated immune cells significantly decreased the proliferation of both OTSCC cell lines and associated with a diminished invasion area of HSC-3 cells. In general, EVs from SCC-25 increased the cytotoxic activity of CD8(+) T and NK cells more than those from HSC-3 cells. However, this effect varied depending on the source and the immune and cancer cell subgroups. In zebrafish, the amount of IL-13 mRNA was decreased by SCC-25 EVs. This study describes promising in vitro and in vivo models to investigate interactions between immune cells, cancer cells, and EVs.
  • Kumar, K. Shiva; Rajesham, Bandari; Ramulu, Meesa Siddi; Bhaskar, Boyapally; Dash, Surjya Narayan; Ashfaq, Mohd Ashraf; Nagarapu, Raju; Khan, Aleem Ahmed; Lehtonen, Sanna; Pal, Manojit (2016)
    Rosuvastatin based novel indole derivatives designed as potential anti-cancer agents were synthesized via a newly developed ligand-free, simple, straightforward and inexpensive one-pot method. The methodology involved a Cu-catalyzed coupling-cyclization of a rosuvastatin based alkyne with o-iodoanilides in the presence of CuI and K2CO3 in PEG-400. Three of the synthesized compounds showed promising anti-proliferative activities against cancer cell lines and an increase of p21 mRNA expression and apoptotic effects in zebrafish embryos/larvae.
  • Singh, Pooja; Ahi, Ehsan Pashay; Sturmbauer, Christian (2021)
    Background The oral and pharyngeal jaw of cichlid fishes are a classic example of evolutionary modularity as their functional decoupling boosted trophic diversification and contributed to the success of cichlid adaptive radiations. Most studies until now have focused on the functional, morphological, or genetic aspects of cichlid jaw modularity. Here we extend this concept to include transcriptional modularity by sequencing whole transcriptomes of the two jaws and comparing their gene coexpression networks. Results We show that transcriptional decoupling of gene expression underlies the functional decoupling of cichlid oral and pharyngeal jaw apparatus and the two units are evolving independently in recently diverged cichlid species from Lake Tanganyika. Oral and pharyngeal jaw coexpression networks reflect the common origin of the jaw regulatory program as there is high preservation of gene coexpression modules between the two sets of jaws. However, there is substantial rewiring of genetic architecture within those modules. We define a global jaw coexpression network and highlight jaw-specific and species-specific modules within it. Furthermore, we annotate a comprehensive in silico gene regulatory network linking the Wnt and AHR signalling pathways to jaw morphogenesis and response to environmental cues, respectively. Components of these pathways are significantly differentially expressed between the oral and pharyngeal jaw apparatus. Conclusion This study describes the concerted expression of many genes in cichlid oral and pharyngeal jaw apparatus at the onset of the independent life of cichlid fishes. Our findings suggest that - on the basis of an ancestral gill arch network-transcriptional rewiring may have driven the modular evolution of the oral and pharyngeal jaws, highlighting the evolutionary significance of gene network reuse. The gene coexpression and in silico regulatory networks presented here are intended as resource for future studies on the genetics of vertebrate jaw morphogenesis and trophic adaptation.
  • Shao, Changwei; Niu, Yongchao; Rastas, Pasi; Liu, Yang; Xie, Zhiyuan; Li, Hengde; Wang, Lei; Jiang, Yong; Tai, Shuaishuai; Tian, Yongsheng; Sakamoto, Takashi; Chen, Songlin (2015)
    High-resolution genetic maps are essential for fine mapping of complex traits, genome assembly, and comparative genomic analysis. Single-nucleotide polymorphisms (SNPs) are the primary molecular markers used for genetic map construction. In this study, we identified 13,362 SNPs evenly distributed across the Japanese flounder (Paralichthys olivaceus) genome. Of these SNPs, 12,712 high-confidence SNPs were subjected to high-throughput genotyping and assigned to 24 consensus linkage groups (LGs). The total length of the genetic linkage map was 3,497.29 cM with an average distance of 0.47 cM between loci, thereby representing the densest genetic map currently reported for Japanese flounder. Nine positive quantitative trait loci (QTLs) forming two main clusters for Vibrio anguillarum disease resistance were detected. All QTLs could explain 5.1-8.38% of the total phenotypic variation. Synteny analysis of the QTL regions on the genome assembly revealed 12 immune-related genes, among them 4 genes strongly associated with V. anguillarum disease resistance. In addition, 246 genome assembly scaffolds with an average size of 21.79 Mb were anchored onto the LGs; these scaffolds, comprising 522.99 Mb, represented 95.78% of assembled genomic sequences. The mapped assembly scaffolds in Japanese flounder were used for genome synteny analyses against zebrafish (Danio rerio) and medaka (Oryzias latipes). Flounder and medaka were found to possess almost one-to-one synteny, whereas flounder and zebrafish exhibited a multi-syntenic correspondence. The newly developed high-resolution genetic map, which will facilitate QTL mapping, scaffold assembly, and genome synteny analysis of Japanese flounder, marks a milestone in the ongoing genome project for this species.
  • Bolotovskiy, Aleksey A.; Levina, Marina A.; DeFaveri, Jacquelin; Merila, Juha; Levin, Boris A. (2018)
    The three-spined stickleback Gasterosteus aculeatus is an important model for studying microevolution and parallel adaptation to freshwater environments. Marine and freshwater forms differ markedly in their phenotype, especially in the number of lateral plates, which are serially repeated elements of the exoskeleton. In fishes, thyroid hormones are involved in adaptation to salinity, as well as the developmental regulation of serially repeated elements. To study how thyroid hormones influence lateral plate development, we manipulated levels of triiodothyronine and thiourea during early ontogeny in a marine and freshwater population with complete and low plate phenotypes, respectively. The development of lateral plates along the body and keel was heterochronic among experimental groups. Fish with a low dosage of exogenous triiodothyronine and those treated with thiourea exhibited retarded development of bony plates compared to both control fish and those treated with higher a triiodothyronine dosage. Several triiodothyronine-treated individuals of the marine form expressed the partial lateral plate phenotype. Some individuals with delayed development of lateral plates manifested 1-2 extra bony plates located above the main row of lateral plates.
  • Doccini, Stefano; Marchese, Maria; Morani, Federica; Gamaldi, Nicola; Mero, Serena; Pezzini, Francesco; Soliymani, Rabah; Santi, Melissa; Signore, Giovanni; Ogi, Asahi; Rocchiccioli, Silvia; Kanninen, Katja M.; Simonati, Alessandro; Lalowski, Maciej; Santorelli, Filippo Maria (2022)
    CLN5 disease (MIM: 256731) represents a rare late-infantile form of neuronal ceroid lipofuscinosis (NCL), caused by mutations in the CLN5 gene that encodes the CLN5 protein (CLN5p), whose physiological roles stay unanswered. No cure is currently available for CLN5 patients and the opportunities for therapies are lagging. The role of lysosomes in the neuro-pathophysiology of CLN5 disease represents an important topic since lysosomal proteins are directly involved in the primary mechanisms of neuronal injury occurring in various NCL forms. We developed and implemented a lysosome-focused, label-free quantitative proteomics approach, followed by functional validations in both CLN5-knockout neuronal-like cell lines and Cln5−/− mice, to unravel affected pathways and modifying factors involved in this disease scenario. Our results revealed a key role of CLN5p in lipid homeostasis and sphingolipid metabolism and highlighted mutual NCL biomarkers scored with high lysosomal confidence. A newly generated cln5 knockdown zebrafish model recapitulated most of the pathological features seen in NCL disease. To translate the findings from in-vitro and preclinical models to patients, we evaluated whether two FDA-approved drugs promoting autophagy via TFEB activation or inhibition of the glucosylceramide synthase could modulate in-vitro ROS and lipid overproduction, as well as alter the locomotor phenotype in zebrafish. In summary, our data advance the general understanding of disease mechanisms and modifying factors in CLN5 disease, which are recurring in other NCL forms, also stimulating new pharmacological treatments.
  • Redchuk, Taras A.; Kaberniuk, Andrii A.; Verkhusha, Vladislav V. (2018)
    Near-infrared (NIR, 740-780 nm) optogenetic systems are well-suited to spectral multiplexing with blue-light-controlled tools. Here, we present two protocols, one for regulation of gene transcription and another for control of protein localization, that use a NIR-responsive bacterial phytochrome BphP1-QPAS1 optogenetic pair. In the first protocol, cells are transfected with the optogenetic constructs for independently controlling gene transcription by NIR (BphP1-QPAS1) and blue (LightOn) light. The NIR and blue-light-controlled gene transcription systems show minimal spectral crosstalk and induce a 35- to 40-fold increase in reporter gene expression. In the second protocol, the BphP1-QPAS1 pair is combined with a light-oxygen-voltage-sensing (LOV) domain-based construct into a single optogenetic tool, termed iRIS. This dual-light-controllable protein localization tool allows tridirectional protein translocation among the cytoplasm, nucleus and plasma membrane. Both procedures can be performed within 3-5 d. Use of NIR light-controlled optogenetic systems should advance basic and biomedical research.
  • Liang, Yipeng; Meyer, Axel; Kratochwil, Claudius F. (2020)
    Many species change their coloration during ontogeny or even as adults. Color change hereby often serves as sexual or status signal. The cellular and subcellular changes that drive color change and how they are orchestrated have been barely understood, but a deeper knowledge of the underlying processes is important to our understanding of how such plastic changes develop and evolve. Here we studied the color change of the Malawi golden cichlid (Melanchromis auratus). Females and subordinate males of this species are yellow and white with two prominent black stripes (yellow morph; female and non-breeding male coloration), while dominant males change their color and completely invert this pattern with the yellow and white regions becoming black, and the black stripes becoming white to iridescent blue (dark morph; male breeding coloration). A comparison of the two morphs reveals that substantial changes across multiple levels of biological organization underlie this polyphenism. These include changes in pigment cell (chromatophore) number, intracellular dispersal of pigments, and tilting of reflective platelets (iridosomes) within iridophores. At the transcriptional level, we find differences in pigmentation gene expression between these two color morphs but, surprisingly, 80% of the genes overexpressed in the dark morph relate to neuronal processes including synapse formation. Nerve fiber staining confirms that scales of the dark morph are indeed innervated by 1.3 to 2 times more axonal fibers. Our results might suggest an instructive role of nervous innervation orchestrating the complex cellular and ultrastructural changes that drive the morphological color change of this cichlid species.
  • Costantini, Alice; Muurinen, Mari H.; Mäkitie, Outi (2021)
    In the last decade, the widespread use of massively parallel sequencing has considerably boosted the number of novel gene discoveries in monogenic skeletal diseases with short stature. Defects in genes playing a role in the maintenance and function of the growth plate, the site of longitudinal bone growth, are a well-known cause of skeletal diseases with short stature. However, several genes involved in extracellular matrix composition or maintenance as well as genes partaking in various biological processes have also been characterized. This review aims to describe the latest genetic findings in spondyloepiphyseal dysplasias, spondyloepimetaphyseal dysplasias, and some monogenic forms of isolated short stature. Some examples of novel genetic mechanisms leading to skeletal conditions with short stature will be described. Strategies on how to successfully characterize novel skeletal phenotypes with short stature and genetic approaches to detect and validate novel gene-disease correlations will be discussed in detail. In summary, we review the latest gene discoveries underlying skeletal diseases with short stature and emphasize the importance of characterizing novel molecular mechanisms for genetic counseling, for an optimal management of the disease, and for therapeutic innovations.
  • Costantini, Alice; Alm, Jessica J.; Tonelli, Francesca; Valta, Helena; Huber, Celine; Tran, Anh N.; Daponte, Valentina; Kirova, Nadi; Kwon, Yong-Uk; Bae, Jung Yun; Chung, Woo Yeong; Tan, Shengjiang; Sznajer, Yves; Nishimura, Gen; Nareoja, Tuomas; Warren, Alan J.; Cormier-Daire, Valerie; Kim, Ok-Hwa; Forlino, Antonella; Cho, Tae-Joon; Mäkitie, Outi (2021)
    Spondyloepimetaphyseal dysplasias (SEMDs) are a heterogeneous group of disorders with variable growth failure and skeletal impairments affecting the spine and long bone epiphyses and metaphyses. Here we report on four unrelated families with SEMD in which we identified two monoallelic missense variants and one monoallelic splice site variant inRPL13, encoding the ribosomal protein eL13. In two out of four families, we observed autosomal dominant inheritance with incomplete penetrance and variable clinical expressivity; the phenotypes of the mutation-positive subjects ranged from normal height with or without hip dysplasia to severe SEMD with severe short stature and marked skeletal dysplasia.In vitrostudies on patient-derived dermal fibroblasts harboringRPL13missense mutations demonstrated normal eL13 expression, with proper subcellular localization but reduced colocalization with eL28 (p<0.001). Cellular functional defects in fibroblasts from mutation-positive subjects indicated a significant increase in the ratio of 60S subunits to 80S ribosomes (p= 0.007) and attenuated global translation (p= 0.017). In line with the human phenotype, ourrpl13mutant zebrafish model, generated by CRISPR-Cas9 editing, showed cartilage deformities at embryonic and juvenile stages. These findings extend the genetic spectrum ofRPL13mutations causing this novel human ribosomopathy with variable skeletal features. Our study underscores for the first time incomplete penetrance and broad phenotypic variability in SEMD-RPL13 type and confirms impaired ribosomal function. Furthermore, the newly generatedrpl13mutant zebrafish model corroborates the role of eL13 in skeletogenesis. (c) 2020 The Authors.Journal of Bone and Mineral Researchpublished by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR)..
  • Fontana, Flavia; Figueiredo, Patricia; Martins, João Pedro; Santos, Hélder A. (2021)
    In vivo models remain a principle screening tool in the drug discovery pipeline. Here, the challenges associated with the need for animal experiments, as well as their impact on research, individual/societal, and economic contexts are discussed. A number of alternatives that, with further development, optimization, and investment, may replace animal experiments are also revised.
  • Dash, Surjya; Hakonen, Elina; Ustinov, Jarkko; Otonkoski, Timo; Andersson, Olov; Lehtonen, Sanna (2016)
    Protection or restoration of pancreatic beta-cell mass as a therapeutic treatment for type 1 diabetes requires understanding of the mechanisms that drive the specification and development of pancreatic endocrine cells. Septins are filamentous small GTPases that function in the regulation of cell division, cytoskeletal organization and membrane remodeling, and are involved in various tissue-specific developmental processes. However, their role in pancreatic endocrine cell differentiation remains unknown. Here we show by functional manipulation techniques in transgenic zebrafish lines that suppression of sept7b, the zebrafish ortholog of human SEPT7, profoundly increases the number of endocrine progenitors but limits their differentiation, leading to reduction in beta- and alpha-cell mass. Furthermore, we discovered that shh (sonic hedgehog) expression in the endoderm, essential for the development of pancreatic progenitors of the dorsal pancreatic bud, is absent in larvae depleted of sept7b. We also discovered that sept7b is important for the differentiation of ventral pancreatic bud-derived cells: sept7b-depleted larvae exhibit downregulation of Notch receptors notch1a and notch1b and show precocious differentiation of NeuroD-positive endocrine cells in the intrapancreatic duct and gut epithelium. Collectively, this study provides a novel insight into the development of pancreatic endocrine progenitors, revealing an essential role for sept7b in endocrine progenitor differentiation.
  • Mosselhy, Dina A.; He, Wei; Hynönen, Ulla; Meng, Yaping; Mohammadi, Pezhman; Palva, Airi; Feng, Qingling; Hannula, Simo-Pekka; Nordstrom, Katrina; Linder, Markus B. (2018)
    Introduction: Antibiotic resistance is a growing concern in health care. Methicillin-resistant Staphylococcus aureus (MRSA), forming biofilms, is a common cause of resistant orthopedic implant infections. Gentamicin is a crucial antibiotic preventing orthopedic infections. Silica-gentamicin (SiO2-G) delivery systems have attracted significant interest in preventing the formation of biofilms. However, compelling scientific evidence addressing their efficacy against planktonic MRSA and MRSA biofilms is still lacking, and their safety has not extensively been studied. Materials and methods: In this work, we have investigated the effects of SiO2-G nanohybrids against planktonic MRSA as well as MRSA and Escherichia coli biofilms and then evaluated their toxicity in zebrafish embryos, which are an excellent model for assessing the toxicity of nanotherapeutics. Results: SiO2-G nanohybrids inhibited the growth and killed planktonic MRSA at a minimum concentration of 500 mu g/mL. SiO2-G nanohybrids entirely eradicated E. coli cells in biofilms at a minimum concentration of 250 mu g/mL and utterly deformed their ultrastructure through the deterioration of bacterial shapes and wrinkling of their cell walls. Zebrafish embryos exposed to SiO2-G nanohybrids (500 and 1,000 mu g/mL) showed a nonsignificant increase in mortality rates, 13.4 +/- 9.4 and 15%+/- 7.1%, respectively, mainly detected 24 hours post fertilization (hpf). Frequencies of malformations were significantly different from the control group only 24 hpf at the higher exposure concentration. Conclusion: Collectively, this work provides the first comprehensive in vivo assessment of SiO2-G nanohybrids as a biocompatible drug delivery system and describes the efficacy of SiO2-G nanohybrids in combating planktonic MRSA cells and eradicating E. coli biofilms.
  • Asghar, Muhammad Yasir; Lassila, Taru; Paatero, Ilkka; Nguyen, Van Dien; Kronqvist, Pauliina; Zhang, Jixi; Slita, Anna; Lof, Christoffer; Zhou, You; Rosenholm, Jessica; Tornquist, Kid (2021)
    Stromal interaction molecule 1 (STIM1) and the ORAI1 calcium channel mediate store-operated calcium entry (SOCE) and regulate a multitude of cellular functions. The identity and function of these proteins in thyroid cancer remain elusive. We show that STIM1 and ORAI1 expression is elevated in thyroid cancer cell lines, compared to primary thyroid cells. Knock-down of STIM1 or ORAI1 attenuated SOCE, reduced invasion, and the expression of promigratory sphingosine 1-phosphate and vascular endothelial growth factor-2 receptors in thyroid cancer ML-1 cells. Cell proliferation was attenuated in these knock-down cells due to increased G1 phase of the cell cycle and enhanced expression of cyclin-dependent kinase inhibitory proteins p21 and p27. STIM1 protein was upregulated in thyroid cancer tissue, compared to normal tissue. Downregulation of STIM1 restored expression of thyroid stimulating hormone receptor, thyroid specific proteins and increased iodine uptake. STIM1 knockdown ML-1 cells were more susceptible to chemotherapeutic drugs, and significantly reduced tumor growth in Zebrafish. Furthermore, STIM1-siRNA-loaded mesoporous polydopamine nanoparticles attenuated invasion and proliferation of ML-1 cells. Taken together, our data suggest that STIM1 is a potential diagnostic and therapeutic target for treatment of thyroid cancer.
  • Paavola, Jere; Alakoski, Tarja; Ulvila, Johanna; Kilpiö, Teemu; Sirén, Juuso; Perttunen, Sanni; Narumanchi, Suneeta; Wang, Hong; Lin, Ruizhu; Porvari, Katja; Junttila, Juhani; Huikuri, Heikki; Immonen, Katariina; Lakkisto, Päivi; Magga, Johanna; Tikkanen, Ilkka; Kerkelä, Risto (2020)
    Background Vascular endothelial zinc finger 1 (Vezf1) is a transcription factor previously shown to regulate vasculogenesis and angiogenesis. We aimed to investigate the role of Vezf1 in the postnatal heart. Methods The role of Vezf1 in regulating cardiac growth and contractile function was studied in zebrafish and in primary cardiomyocytes. Findings We find that expression of Vezf1 is decreased in diseased human myocardium and mouse hearts. Our experimental data shows that knockdown of zebrafish Vezf1 reduces cardiac growth and results in impaired ventricular contractile response to β-adrenergic stimuli. However, Vezf1 knockdown is not associated with dysregulation of cardiomyocyte Ca2+ transient kinetics. Gene ontology enrichment analysis indicates that Vezf1 regulates cardiac muscle contraction and dilated cardiomyopathy related genes and we identify cardiomyocyte Myh7/β-MHC as key target for Vezf1. We further identify a key role for an MCAT binding site in the Myh7 promoter regulating the response to Vezf1 knockdown and show that TEAD-1 is a binding partner of Vezf1. Interpretation We demonstrate a role for Vezf1 in regulation of compensatory cardiac growth and cardiomyocyte contractile function, which may be relevant in human cardiac disease.