Browsing by Subject "Zostera marina"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Angove, Charlotte; Norkko, Alf; Gustafsson, Camilla (2018)
    Aquatic plant meadows are valuable components to the 'coastal filter' and it is important to understand the processes that drive their ability to cycle nutrients. However, at present, the field-based evidence for understanding the drivers of nutrient uptake by plants is lacking. This study aimed to investigate how well individual shoots of aquatic plants could meet their nitrogen demands using the sediment nutrient pool (porewater ammonium) and to explore which traits helped to facilitate such uptake. Several species were investigated in shallow, submerged (2-4 m) mixed-species communities in the northern Baltic Sea using incubation experiments with enriched ammonium. After a 3.5 h incubation time, individuals were collected and analysed for nitrogen (% DW) and N-15 (at-%) concentrations. Uptake by plants was calculated per unit nitrogen in response to the N-15 labelled source and to overall nitrogen availability. Background porewater ammonium availability was highly variable between individual plants. Species identity did not significantly affect uptake metrics and the effect of ambient porewater availability was weak. As biomass increased there were significant logarithmic declines in the 95th quantiles of nutrient uptake rates, ambient porewater nutrient availability and aboveground nitrogen tissue concentrations (% DW). Such findings suggested that uptake rates of plants were significantly demand driven and the nutrient conditions of the porewater were significantly driven by the demands of the plant. Findings parameterised the unfulfilled potential for some aquatic plants to cycle nutrients more efficiently and highlighted the potential importance of access to new nutrient sources as a way of enhancing nutrient cycling by aquatic plants. Plant traits and community properties such as the activity of infauna could facilitate such an access and are likely important for nutrient uptake.
  • Meysick, Lukas; Ysebaert, Tom; Jansson, Anna; Montserrat, Fransesc; Valanko, Sebastian; Villnäs, Anna; Boström, Christoffer; Norkko, Joanna; Norkko, Alf (2019)
    Foundation species host diverse associated communities by ameliorating environmental stress. The strength of this facilitative effect can be highly dependent on the underlying biotic and abiotic context. We investigated community level patterns of macrofauna associated with and adjacent to the marine foundation species eelgrass (Zostera marina) along a hydrodynamic stress gradient. We could demonstrate that the relative importance of this foundation species for its infaunal community increases with environmental variables associated with increasing hydrodynamic stress (depth, sand ripples formation, sediment grain size and organic content). Faunal assemblages in proximity to the Zostera patch edges, however, showed no (infauna) or negative (epifauna) response to hydrodynamic stress. Our study highlights that the facilitative outcome of a foundation species is conditional to the faunal assemblage in question and can be highly variable even between positions within the habitat.
  • Gustafsson, Camilla Maria; Norkko, Alf Mattias (2019)
    1. Aquatic plant meadows are important coastal habitats that sustain many ecosystem functions such as primary production and carbon sequestration. Currently, there is a knowledge gap in understanding which plant functional traits, for example, leaf size or plant height underlie primary production in aquatic plant communities. 2. To study how plant traits are related to primary production, we conducted a field survey in the Baltic Sea, Finland, which is characterized by high plant species and functional diversity. Thirty sites along an exposure gradient were sampled (150 plots), and nine plant morphological and chemical traits measured. The aim was to discern how community-weighted mean traits affect community production and whether this relationship changes along an environmental gradient using structural equation modelling (SEM). 3. Plant height had a direct positive effect on production along an exposure gradient (r = 0.33) and indirect effects through two leaf chemical traits, leaf δ15N and leaf δ13C (r = 0.24 and 0.18, respectively) resulting in a total effect of 0.28. In plant communities experiencing varying exposure, traits such as root N concentration and leaf δ15N had positive and negative effects on production, respectively. 4. Synthesis. Our results demonstrate that the relationship between aquatic plant functional traits and community production is variable and changes over environmental gradients. Plant height generally has a positive effect on community production along an exposure gradient, while the link between other traits and production changes in plant communities experiencing varying degrees of exposure. Thus, the underlying biological mechanisms influencing production differ in plant communities, emphasizing the need to resolve variability and its drivers in real-world communities. Importantly, functionally diverse plant communities sustain ecosystem functioning differently and
  • Angove, Charlotte; Norkko, Alf; Gustafsson, Camilla (2020)
    Functional diversity (FD) experiments are highly effective for investigating how a community interacts with its environment. However, such experiments using morphological and chemical traits have not been conducted for submerged aquatic plants and their insights would be highly valuable for understanding the ecology of these communities. We conducted a 15-week field experiment in the Baltic Sea where we manipulated the species composition of aquatic plant communities to investigate functional diversity. We constructed artificial triculture communities with different species compositions to change the Community Weighted Means (CWMs) and variability of traits. We measured nine plant traits and tested how community productivity (CP) was related to FD, trait CWMs and community trait ranges. CP varied by more than four times across treatments and functional richness was significantly related to CP. Functional evenness and functional divergence were not significantly related to CR Height, leaf area and delta C-13 were significantly related to CP. Leaf delta C-13 trends with CP suggested that the carbon supply is not replete, yet species composition was partly responsible for the relationship. Plant height likely had multifaceted benefits to CP because there was evidence of a competitive height interaction between the tallest and 2 nd tallest species, therefore the effects of plant height to CP would have been disproportionally large. The height of the tallest species significantly drove the variability of the community height range, which was significantly related to CP and it had a relatively large influence on the calculation of FD indices. Leaf area, which was strongly correlated to plant height, was also significantly related to CR The significant relationship between functional richness and CP was most likely driven by the presence of taller plants. FD likely enhanced CP, by selecting for extreme trait values which enhanced production (selection effect), while niche complementarity effects were not observed. This study provides experimental evidence and mechanistic insights into the role of FD and specific traits for CP in submerged aquatic plant communities. To conclude, FD was significantly related to CP of temperate aquatic plant communities likely by selecting for traits which enhanced light capture, with consequences for carbon supply.
  • Rodil, Iván F.; Attard, Karl M.; Gustafsson, Camilla; Norkko, Alf (2021)
    The contributions of habitat-forming species to the biodiversity and ecosystem processes of marine and terrestrial ecosystems are widely recognized. Aquatic plants are considered foundation species in shallow ecosystems, as they maintain biodiversity and sustain many ecosystem functions such as primary production and respiration. Despite the increasing amount of biodiversity-ecosystem functioning experiments in seagrass habitats, the effects of benthic variability on ecosystem functioning are rarely investigated across spatially variable aquatic plant habitats. Here, we quantitatively link seasonal variability in seafloor metabolism (i.e. gross primary production and community respiration) with major benthic community components (i.e. microphytobenthos, aquatic plants and macrofauna) across a structural complexity gradient of habitat-forming species (in terms of shoot density and biomass), ranging from bare sand, to a sparse mixture of plants to a dense monospecific seagrass meadow. The increasing complexity gradient enhanced the magnitude of the relationships between benthic community and seafloor metabolism. The daily average seafloor metabolism per season at the bare site was similar to the sparse site, highlighting the role of microphytobenthos for seafloor metabolism in shallow unvegetated sediments. The contribution of the associated macrofauna to the seafloor respiration was similar to the aquatic plant community contribution. Infauna was the main macrofaunal component significantly explaining the seasonal variability of seafloor respiration. However, benthic community-metabolism relationships were stronger within the plant community than within the macrofauna community (i.e. steepest slopes and lowest p-values). Understanding these relationships are a priority since climate change and biodiversity loss are reducing habitat complexity around the world, jeopardizing valuable ecosystem functions and services.