Browsing by Subject "accessible"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Foster, Scott D.; Vanhatalo, Jarno; Trenkel, Verena M.; Schulz, Torsti; Lawrence, Emma; Przeslawski, Rachel; Hosack, Geoffrey (2021)
    Data are currently being used, and reused, in ecological research at an unprecedented rate. To ensure appropriate reuse however, we need to ask the question: "Are aggregated databases currently providing the right information to enable effective and unbiased reuse?" We investigate this question, with a focus on designs that purposefully favor the selection of sampling locations (upweighting the probability of selection of some locations). These designs are common and examples are those designs that have uneven inclusion probabilities or are stratified. We perform a simulation experiment by creating data sets with progressively more uneven inclusion probabilities and examine the resulting estimates of the average number of individuals per unit area (density). The effect of ignoring the survey design can be profound, with biases of up to 250% in density estimates when naive analytical methods are used. This density estimation bias is not reduced by adding more data. Fortunately, the estimation bias can be mitigated by using an appropriate estimator or an appropriate model that incorporates the design information. These are only available however, when essential information about the survey design is available: the sample location selection process (e.g., inclusion probabilities), and/or covariates used in their specification. The results suggest that such information must be stored and served with the data to support meaningful inference and data reuse.
  • LifeCycle Project Group; Pinot de Moira, Angela; Haakma, Sido; Strandberg-Larsen, Katrine; Eriksson, Johan G.; Mikkola, Tuija M.; Nybo Andersen, Anne-Marie (2021)
    The Horizon2020 LifeCycle Project is a cross-cohort collaboration which brings together data from multiple birth cohorts from across Europe and Australia to facilitate studies on the influence of early-life exposures on later health outcomes. A major product of this collaboration has been the establishment of a FAIR (findable, accessible, interoperable and reusable) data resource known as the EU Child Cohort Network. Here we focus on the EU Child Cohort Network’s core variables. These are a set of basic variables, derivable by the majority of participating cohorts and frequently used as covariates or exposures in lifecourse research. First, we describe the process by which the list of core variables was established. Second, we explain the protocol according to which these variables were harmonised in order to make them interoperable. Third, we describe the catalogue developed to ensure that the network’s data are findable and reusable. Finally, we describe the core data, including the proportion of variables harmonised by each cohort and the number of children for whom harmonised core data are available. EU Child Cohort Network data will be analysed using a federated analysis platform, removing the need to physically transfer data and thus making the data more accessible to researchers. The network will add value to participating cohorts by increasing statistical power and exposure heterogeneity, as well as facilitating cross-cohort comparisons, cross-validation and replication. Our aim is to motivate other cohorts to join the network and encourage the use of the EU Child Cohort Network by the wider research community.