Browsing by Subject "airborne laser scanning"

Sort by: Order: Results:

Now showing items 1-16 of 16
  • Zhu, L (Finnish Geospatial Research Institute FGI, NLS, 2015)
    FGI Publications
  • Amara, Edward; Adhikari, Hari; Heiskanen, Janne; Siljander, Mika; Munyao, Martha; Omondi, Patrick; Pellikka, Petri (2020)
    Savannahs provide valuable ecosystem services and contribute to continental and global carbon budgets. In addition, savannahs exhibit multiple land uses, e.g., wildlife conservation, pastoralism, and crop farming. Despite their importance, the effect of land use on woody aboveground biomass (AGB) in savannahs is understudied. Furthermore, fences used to reduce human-wildlife conflicts may affect AGB patterns. We assessed AGB densities and patterns, and the effect of land use and fences on AGB in a multi-use savannah landscape in southeastern Kenya. AGB was assessed with field survey and airborne laser scanning (ALS) data, and a land cover map was developed using Sentinel-2 satellite images in Google Earth Engine. The highest woody AGB was found in riverine forest in a conservation area and in bushland outside the conservation area. The highest mean AGB density occurred in the non-conservation area with mixed bushland and cropland (8.9 Mg center dot ha(-1)), while the lowest AGB density (2.6 Mg center dot ha(-1)) occurred in overgrazed grassland in the conservation area. The largest differences in AGB distributions were observed in the fenced boundaries between the conservation and other land-use types. Our results provide evidence that conservation and fences can create sharp AGB transitions and lead to reduced AGB stocks, which is a vital role of savannahs as part of carbon sequestration.
  • Vastaranta, Mikko; Yrttimaa, Tuomas; Saarinen, Ninni; Yu, Xiaowei; Karjalainen, Mika; Nurminen, Kimmo; Karila, Kirsi; Kankare, Ville; Luoma, Ville; Pyörälä, Jiri; Junttila, Samuli; Tanhuanpaa, Topi; Kaartinen, Harri; Kukko, Antero; Honkavaara, Eija; Jaakkola, Anttoni; Liang, Xinlian; Wang, Yunsheng; Vaaja, Matti; Hyyppä, Hannu; Katoh, Masato; Wulder, Michael A.; Holopainen, Markus; Hyyppä, Juha (2018)
    The objective of this study is to better understand the relationship between forest structure and point cloud features generated from certain airborne and space borne sensors. Point cloud features derived from airborne laser scanning (ALS), aerial imagery (AI), WorldView-2 imagery (WV2), TerraSAR-X, and Tandem-X (TDX) data were classified as features characterizing forest height and density as well as variation in tree height. Correlations between these features and field-measured attributes describing forest height, density and tree height variation were investigated at plot scale. From the field-measured attributes, basal area (G) and the number of trees per unit area (N) were used as forest density indicators whereas maximum tree height (H-max) and standard deviation in tree height (H-std) were used as indicators for forest height and tree height variation, respectively. In the analyses, field observations from 91 sample plots (32 m x 32 m) located in southern Finland were used. Even though ALS was found to be the most accurate data source in characterizing forest structure, AI, WV2, and TDX were also capable of characterizing forest height at plot scale with correlation coefficients stronger than 0.85. However, ALS was the only data source capable of providing separate features for characterizing also the variation in tree height and forest density. Features related to forest height, generated from the other data sources besides ALS, also provided strongest correlation with the forest density attributes and variation in tree height, in addition to H-max. Due to these more diverse characterization capabilities, forest structural attributes can be predicted more accurately by using ALS, also in the areas where the relation between the attributes of interest is not solely dependent on forest height, compared to the other investigated 3D remote sensing data sources.
  • Hovi, Aarne (Helsingfors universitet, 2011)
    Understory trees often emerging beneath dominant tree layer in even-aged stands have significance for timber harvesting operations, forest regeneration, landscape and visibility analysis, biodiversity and carbon balance. Airborne laser scanning (ALS) has proven to be an efficient remote sensing method in inventory of mature forest stands. Recent introduction of ALS to operational forest inventory systems could potentially enable cost-efficient acquisition of information on understory tree layer. In this study, accurate field reference and discrete return LiDAR data (1–2 km flying altitude, 0.9–9.7 pulses m-2) were used. The LiDAR data were obtained with Optech ALTM3100 and Leica ALS50-II sensors. The field reference plots represented typical commercially managed, even-aged pine stands in different developmental stages. Aims of the study were 1) to study the LiDAR signal from understory trees at pulse level and the factors affecting the signal, and 2) to explore what is the explanatory power of area-based LiDAR features in predicting the properties of understory tree layer. Special attention was paid in studying the effect of transmission losses to upper canopy layers on the obtained signal and possibilities to make compensations for transmission losses to the LiDAR return intensity. Differences in intensity between understory tree species were small and varied between data sets. Thus, intensity is of little use in tree species classification. Transmission losses increased noise in intensity observations from understory tree layer. Compensations for transmission losses were made to the 2nd and 3rd return data. The compensations decreased intensity variation within targets and improved classification accuracy between targets. In classification between ground and most abundant understory tree species using 2nd return data, overall classification accuracies were 49.2–54.9 % and 57.3–62.0 %, and kappa values 0.03–0.13 and 0.10–0.22, before and after compensations, respectively. The classification accuracy improved also in 3rd return data. The most important variable explaining the transmission losses was the intensity from previous echoes and pulse intersection geometry with upper canopy layer had a minor effect. The probability of getting an echo from an understory tree was studied, and differences between tree species were observed. Spruce produced an echo with a greater probability than broadleaved trees. If the pulse was subject to transmission losses, the differences were increased. The results imply that area-based LiDAR height distribution metrics could depend on tree species. There were differences in intensity data between sensors, which are a problem if multiple LiDAR data sets are used in inventory systems. Also the echo probabilities differed between sensors, which caused minor changes in LiDAR height distribution metrics. Area-based predictors for stem number and mean height of understory trees were detected if trees with height < 1 m were not included. In general, predictions for stem number were more accurate than for mean height. Explanatory power of the studied features did not markedly decrease with decreasing pulse density, which is important for practical applications. Proportion of broadleaved trees could not be predicted. As a conclusion, discrete return LiDAR data could be utilized e.g. in detecting the need for initial clearings before harvesting operations. However, accurate characterization of understory trees (e.g. detection of tree species) or detection of the smallest seedlings seems to be out of reach. Additional research is needed to generalize the results to different forests.
  • Aalto, Iris (Helsingin yliopisto, 2020)
    Global warming is expected to have detrimental consequences on fragile ecosystems in the tropics and to threaten both the global biodiversity as well as food security of millions of people. Forests have the potential to buffer the temperature changes, and the microclimatic conditions below tree canopies usually differ substantially from the ambient macroclimate. Trees cool down their surroundings through several biophysical mechanisms, and the cooling benefits occur also with trees outside forest. Remote sensing technologies offer new possibilities to study how tree cover affects temperatures both in local and regional scales. The aim of this study was to examine canopy cover’s effect on microclimate and land surface temperature (LST) in Taita Hills, Kenya. Temperatures recorded by 19 microclimate sensors under different canopy covers in the study area and LST estimated by Landsat 8 thermal infrared sensor (TIRS) were studied. The main interest was in daytime mean and maximum temperatures measured with the microclimate sensors in June-July 2019. The Landsat 8 imagery was obtained in July 4, 2019 and LST was retrieved using the single-channel method. The temperature records were combined with high-resolution airborne laser scanning (ALS) data of the area from years 2014 and 2015 to address how topographical factors and canopy cover affect temperatures in the area. Four multiple regression models were developed to study the joint impacts of topography and canopy cover on LST. The results showed a negative linear relationship between daytime mean and maximum temperatures and canopy cover percentage (R2 = 0.6–0.74). Any increase in canopy cover contributed to reducing temperatures at all microclimate measuring heights, the magnitude being the highest at soil surface level. The difference in mean temperatures between 0% and 100% canopy cover sites was 4.6–5.9 ˚C and in maximum temperatures 8.9–12.1 ˚C. LST was also affected negatively by canopy cover with a slope of 5.0 ˚C. It was found that canopy cover’s impact on LST depends on altitude and that a considerable dividing line existed at 1000 m a.s.l. as canopy cover’s effect in the highlands decreased to half compared to the lowlands. Based on the results it was concluded that trees have substantial effect on both microclimate and LST, but the effect is highly dependent on altitude. This indicates trees’ increasing significance in hot environments and highlights the importance of maintaining tree cover particularly in the lowland areas. Trees outside forests can increase climate change resilience in the area and the remaining forest fragments should be conserved to control the regional temperatures.
  • Yu, Xiaowei; Hyyppä, Juha; Karjalainen, Mika; Nurminen, Kimmo; Karila, Kirsi; Vastaranta, Mikko; Kankare, Ville; Kaartinen, Harri; Holopainen, Markus; Honkavaara, Eija; Kukko, Antero; Jaakkola, Anttoni; Liang, Xinlian; Wang, Yunsheng; Hyyppä, Hannu; Katoh, Masato (2015)
    It is anticipated that many of the future forest mapping applications will be based on three-dimensional (3D) point clouds. A comparison study was conducted to verify the explanatory power and information contents of several 3D remote sensing data sources on the retrieval of above ground biomass (AGB), stem volume (VOL), basal area (G), basal-area weighted mean diameter (D-g) and Lorey's mean height (H-g) at the plot level, utilizing the following data: synthetic aperture radar (SAR) Interferometry, SAR radargrammetry, satellite-imagery having stereo viewing capability, airborne laser scanning (ALS) with various densities (0.8-6 pulses/m(2)) and aerial stereo imagery. Laser scanning is generally known as the primary source providing a 3D point cloud. However, photogrammetric, radargrammetric and interferometric techniques can be used to produce 3D point clouds from space- and air-borne stereo images. Such an image-based point cloud could be utilized in a similar manner as ALS providing that accurate digital terrain model is available. In this study, the performance of these data sources for providing point cloud data was evaluated with 91 sample plots that were established in Evo, southern Finland within a boreal forest zone and surveyed in 2014 for this comparison. The prediction models were built using random forests technique with features derived from each data sources as independent variables and field measurements of forest attributes as response variable. The relative root mean square errors (RMSEs) varied in the ranges of 4.6% (0.97 m)-13.4% (2.83 m) for H-g, 11.7% (3.0 cm)-20.6% (5.3 cm) for D-g, 14.8% (4.0 m(2)/ha)-25.8% (6.9 m(2)/ha) for G, 15.9% (43.0 m(3)/ha)-31.2% (84.2 m(3)/ha) for VOL and 14.3% (19.2 Mg/ha)-27.5% (37.0 Mg/ha) for AGB, respectively, depending on the data used. Results indicate that ALS data achieved the most accurate estimates for all forest inventory attributes. For image-based 3D data, high-altitude aerial images and WorldView-2 satellite optical image gave similar results for H-g and D-g, which were only slightly worse than those of ALS data. As expected, spaceborne SAR data produced the worst estimates. WorldView-2 satellite data performed well, achieving accuracy comparable to the one with ALS data for G, VOL and AGB estimation. SAR interferometry data seems to contain more information for forest inventory than SAR radargrammetry and reach a better accuracy (relative RMSE decreased from 13.4% to 9.5% for H-g, 20.6% to 19.2% for D-g, 25.8% to 20.9% for G, 31.2% to 22.0% for VOL and 27.5% to 20.7% for AGB, respectively). However, the availability of interferometry data is limited. The results confirmed the high potential of all 3D remote sensing data sources for forest inventory purposes. However, the assumption of using other than ALS data is that there exist a high quality digital terrain model, in our case it was derived from ALS.
  • Viinikka, Arto; Hurskainen, Pekka; Keski-Saari, Sarita; Kivinen, Sonja; Tanhuanpää, Topi; Mäyrä, Janne; Poikolainen, Laura; Vihervaara, Petteri; Kumpula, Timo (2020)
    Sustainable forest management increasingly highlights the maintenance of biological diversity and requires up-to-date information on the occurrence and distribution of key ecological features in forest environments. European aspen (Populus tremulaL.) is one key feature in boreal forests contributing significantly to the biological diversity of boreal forest landscapes. However, due to their sparse and scattered occurrence in northern Europe, the explicit spatial data on aspen remain scarce and incomprehensive, which hampers biodiversity management and conservation efforts. Our objective was to study tree-level discrimination of aspen from other common species in northern boreal forests using airborne high-resolution hyperspectral and airborne laser scanning (ALS) data. The study contained multiple spatial analyses: First, we assessed the role of different spectral wavelengths (455-2500 nm), principal component analysis, and vegetation indices (VI) in tree species classification using two machine learning classifiers-support vector machine (SVM) and random forest (RF). Second, we tested the effect of feature selection for best classification accuracy achievable and third, we identified the most important spectral features to discriminate aspen from the other common tree species. SVM outperformed the RF model, resulting in the highest overall accuracy (OA) of 84% and Kappa value (0.74). The used feature set affected SVM performance little, but for RF, principal component analysis was the best. The most important common VI for deciduous trees contained Conifer Index (CI), Cellulose Absorption Index (CAI), Plant Stress Index 3 (PSI3), and Vogelmann Index 1 (VOG1), whereas Green Ratio (GR), Red Edge Inflection Point (REIP), and Red Well Position (RWP) were specific for aspen. Normalized Difference Red Edge Index (NDRE) and Modified Normalized Difference Index (MND705) were important for coniferous trees. The most important wavelengths for discriminating aspen from other species included reflectance bands of red edge range (724-727 nm) and shortwave infrared (1520-1564 nm and 1684-1706 nm). The highest classification accuracy of 92% (F1-score) for aspen was achieved using the SVM model with mean reflectance values combined with VI, which provides a possibility to produce a spatially explicit map of aspen occurrence that can contribute to biodiversity management and conservation efforts in boreal forests.
  • Junttila, Samuli (Helsingin yliopisto, 2014)
    The effect of forest health and structure to the relative surface temperature captured by airborne thermal imagery was investigated in Norway Spruce-dominated stands in Southern Finland. Canopy surface temperature has long been recognized useful in monitoring vegetation water status. Recent studies have shown also its potential in monitoring vegetation health. Airborne thermal imagery, Airborne Light Detection and Ranging (LiDAR) and field measurements were acquired from the area of interest (AOI). The relative surface temperature correlated most negatively with the logarithm of stem volume, Lorey’s height and logarithm of basal area at resolution of 254m2 (9-m radius). In other words, taller and older stands had colder surface temperatures. In addition, LiDAR metrics, such as height percentiles and canopy cover percentage, were compared with surface temperature. Standard deviation of canopy height model, height features (H90, CHM_max) and canopy cover percentage were most strongly negatively correlated with the surface temperature. On average, higher surface temperatures were detected in defoliated canopies indicating that thermal images may provide some additional information for classifying forests health status. However, the surface temperature of defoliated plots varied considerably. It was also found that surface temperature differences between canopy and ground responses were higher in defoliated plots. Based on the results, forest health and structure affect to the surface temperature captured by airborne thermal imagery and these effects should be taken into account when developing forest health mapping applications using thermal imagery.
  • Junttila, Oula Samuli; Vastaranta, Mikko Antero; Hämäläinen, Jarno; Latva-käyrä, Petri; Holopainen, Markus Edvard; Hernandez-Clemente, Rocio; Hyyppä, Hannu; Navarro-Cerrillo, Rafael (2017)
    The effect of forest structure and health on the relative surface temperature captured by airborne thermal imagery was investigated in Norway Spruce-dominated stands in Southern Finland. Airborne thermal imagery, airborne scanning light detection and ranging (LiDAR) data and 92 field-measured sample plots were acquired at the area of interest. The surface temperature correlated most negatively with the logarithm of stem volume, Lorey’s height and the logarithm of basal area at a resolution of 254 m2 (9-m radius). LiDAR-derived metrics: the standard deviations of the canopy heights, canopy height (upper percentiles and maximum height) and canopy cover percentage were most strongly negatively correlated with the surface temperature. Although forest structure has an effect on the detected surface temperature, higher temperatures were detected in severely defoliated canopies and the difference was statistically significant. We also found that the surface temperature differences between the segmented canopy and the entire plot were greater in the defoliated plots, indicating that thermal images may also provide some additional information for classifying forests health status. Based on our results, the effects of forest structure on the surface temperature captured by airborne thermal imagery should be taken into account when developing forest health mapping applications using thermal imagery.
  • Korpela, Ilkka; Haapanen, R.; Korrensalo, A.; Tuittila, E-S; Vesala, T. (2020)
    Boreal bogs are important stores and sinks of atmospheric carbon whose surfaces are characterised by vegetation microforms. Efficient methods for monitoring their vegetation are needed because changes in vegetation composition lead to alteration in their function such as carbon gas exchange with the atmosphere. We investigated how airborne image and waveform-recording LiDAR data can be used for 3D mapping of microforms in an open bog which is a mosaic of pools, hummocks with a few stunted pines, hollows, intermediate surfaces and mud-bottom hollows. The proposed method operates on the bog surface, which is reconstructed using LiDAR. The vegetation was classified at 20 cm resolution. We hypothesised that LiDAR data describe surface topography, moisture and the presence and depth of field-layer vegetation and surface roughness; while multiple images capture the colours and texture of the vegetation, which are influenced by directional reflectance effects. We conclude that geometric LiDAR features are efficient predictors of microforms. LiDAR intensity and echo width were specific to moisture and surface roughness, respectively. Directional reflectance constituted 4-34 % of the variance in images and its form was linked to the presence of the field layer. Microform-specific directional reflectance patterns were deemed to be of marginal value in enhancing the classification, and RGB image features were inferior to LiDAR variables. Sensor fusion is an attractive option for fine-scale mapping of these habitats. We discuss the task and propose options for improving the methodology.
  • Nisula, Kalle (Helsingin yliopisto, 2019)
    In Finland, forest road network has played a significant role in the society throughout history by serving landowners, stakeholders of timber trade, forest management operators, agricultural- and other entrepreneurs. Different forest recreational users such as berry pickers, mushroom pickers and hunters benefit also from good quality forest roads. Wide forest road network help also in preventing forest fires, building fires and it provides help for human and animal rescue missions. In Finland, large number of private forest roads have reached end of their working life and require therefore wide renovations in near future so that the high quality can be maintained. The large-scale determination of forest roads quality is vital so that situation of lower level road network can be followed, and decisions can be maid whether forest roads can be utilized in timber harvesting operations for example. The growing trend in size and weight of timber transport vehicles will cause more careful route planning to the harvest site when forest roads are in bad shape. Good quality forest roads will reduce fuel consumption in timber transport, vehicle damages and road damages. The main objective in this study was to determine the potential of open access geographic information data and especially open access low-density airborne laser scanning data to evaluate the quality of forest roads. Area-based laser scanning inventory method was used with reference data from field plots. Field data was collected from area of research in November 2018 and it consisted from predefined sample plots that were evaluated with the means of traditional forest road quality factors. The aim was to find these quality factors from ALS data and from other open access data and predict forest road quality class using non-parametric k-nearest neighbor method. The results show that metrics calculated from ALS data were quite important in evaluating forest road quality classes. Metrics that illustrate point height distribution, height averages and metrics extracted from digital elevation model which illustrate slope were the most significant in this study. The results show also that the correlation of individual metrics and forest road quality class from reference data was not very high. However, the quality class of forest roads could be predicted correctly at least 69,8 % accuracy when k-nearest neighbor method was used, and all metrics were used. The method used in this study can be utilized to predict forest road quality class relatively accurately, but the accuracy could still be improved. One way to improve this method would be to use high density ALS data and more accurate reference data. It could also be interesting to use this method in another area of research and inspect how the results would differ from this study.
  • Vastaranta, Mikko; Saarinen, Ninni; Kankare, Ville; Holopainen, Markus; Kaartinen, Harri; Hyyppa, Juha; Hyyppa, Hannu (2014)
  • Puolakka, Paula (Helsingfors universitet, 2010)
    Leaf and needle biomasses are key factors in forest health. Insects that feed on needles cause growth losses and tree mortality. Insect outbreaks in Finnish forests have increased rapidly during the last decade and due to climate change the damages are expected to become more serious. There is a need for cost-efficient methods for inventorying these outbreaks. Remote sensing is a promising means for estimating forests and damages. The purpose of this study is to investigate the usability of airborne laser scanning in estimating Scots pine defoliation caused by the common pine sawfly (Diprion pini L.). The study area is situated in Ilomantsi district, eastern Finland. Study materials included high-pulse airborne laser scannings from July and October 2008. Reference data consisted of 90 circular field plots measured in May-June 2009. Defoliation percentage on these field plots was estimated visually. The study was made on plot-level and methods used were linear regression, unsupervised classification, Maximum likelihood method, and stepwise linear regression. Field plots were divided in defoliation classes in two different ways: When divided in two classes the defoliation percentages used were 0–20 % and 20–100 % and when divided in four classes 0–10 %, 10–20 %, 20–30 % and 30–100 %. The results varied depending on method and laser scanning. In the first laser scanning the best results were obtained with stepwise linear regression. The kappa value was 0,47 when using two classes and 0,37 when divided in four classes. In the second laser scanning the best results were obtained with Maximum likelihood. The kappa values were 0,42 and 0,37, correspondingly. The feature that explained defoliation best was vegetation index (pulses reflected from height > 2m / all pulses). There was no significant difference in the results between the two laser scannings so the seasonal change in defoliation could not be detected in this study.
  • Vastaranta, Mikko; Niemi, Mikko; Karjalainen, Mika; Peuhkurinen, Jussi; Kankare, Ville; Hyyppa, Juha; Holopainen, Markus (2014)
  • Wallenius, Tarja (Helsingfors universitet, 2010)
    In this study, a quality assessment method based on sampling of primary laser inventory units (microsegments) was analysed. The accuracy of a laser inventory carried out in Kuhmo was analysed as a case study. Field sample plots were measured on the sampled microsegments in the Kuhmo inventory area. Two main questions were considered. Did the ALS based inventory meet the accuracy requirements set for the provider and how should a reliable, cost-efficient and independent quality assessment be undertaken. The agreement between control measurement and ALS based inventory was analysed in four ways: 1) The root mean squared errors (RMSEs) and bias were calculated. 2) Scatter plots with 95% confidence intervals were plotted and the placing of identity lines was checked. 3) Bland-Altman plots were drawn so that the mean difference of attributes between the control method and ALS-method was calculated and plotted against average value of attributes. 4) The tolerance limits were defined and combined with Bland-Altman plots. The RMSE values were compared to a reference study from which the accuracy requirements had been set to the service provider. The accuracy requirements in Kuhmo were achieved, however comparison of RMSE values proved to be difficult. Field control measurements are costly and time-consuming, but they are considered to be robust. However, control measurements might include errors, which are difficult to take into account. Using the Bland-Altman plots none of the compared methods are considered to be completely exact, so this offers a fair way to interpret results of assessment. The tolerance limits to be set on order combined with Bland-Altman plots were suggested to be taken in practise. In addition, bias should be calculated for total area. Some other approaches for quality control were briefly examined. No method was found to fulfil all the required demands of statistical reliability, cost-efficiency, time efficiency, simplicity and speed of implementation. Some benefits and shortcomings of the studied methods were discussed.
  • Ahokas, Eero; Hyyppä, Juha; Yu, Xiaowei; Holopainen, Markus (2011)