Browsing by Subject "alpha-numbers"

Sort by: Order: Results:

Now showing items 1-1 of 1
  • Orponen, Tuomas (2019)
    Let mu be Radon measures on R, with mu nonatomic and nu doubling, and write mu = mu(a) + mu(s) for the Lebesgue decomposition of mu relative to nu. For an interval I subset of R, define alpha(mu,nu) (I) := W-1 (mu(I), nu(I)), the Wasserstein distance of normalised blow-ups of mu and nu restricted to I. Let S nu be the square function S-nu(2) (mu) = Sigma alpha(2)(mu,nu)(I) chi(1), where D is the family of dyadic intervals of side-length at most 1. I prove that S-nu(mu) is finite mu(a) almost everywhere and infinite mu(s) almost everywhere. I also prove a version of the result for a nondyadic variant of the square function S-nu(mu). The results answer the simplest "n = d = 1" case of a problem of J. Azzam, G. David and T. Toro.