Browsing by Subject "alternating minimisation"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Bleyer, Ismael Rodrigo; Lybeck, Lasse; Auvinen, Harri; Airaksinen, Manu; Alku, Paavo; Siltanen, Samuli (2017)
    A new method is proposed for solving the glottal inverse filtering (GIF) problem. The goal of GIF is to separate an acoustical speech signal into two parts: the glottal airflow excitation and the vocal tract filter. To recover such information one has to deal with a blind deconvolution problem. This ill-posed inverse problem is solved under a deterministic setting, considering unknowns on both sides of the underlying operator equation. A stable reconstruction is obtained using a double regularization strategy, alternating between fixing either the glottal source signal or the vocal tract filter. This enables not only splitting the nonlinear and nonconvex problem into two linear and convex problems, but also allows the use of the best parameters and constraints to recover each variable at a time. This new technique, called alternating minimization glottal inverse filtering (AM-GIF), is compared with two other approaches: Markov chain Monte Carlo glottal inverse filtering (MCMC-GIF), and iterative adaptive inverse filtering (IAIF), using synthetic speech signals. The recent MCMC-GIF has good reconstruction quality but high computational cost. The state-of-the-art IAIF method is computationally fast but its accuracy deteriorates, particularly for speech signals of high fundamental frequency (F0). The results show the competitive performance of the new method: With high F0, the reconstruction quality is better than that of IAIF and close to MCMC-GIF while reducing the computational complexity by two orders of magnitude.
  • Bleyer, Ismael Rodrigo; Ramlau, Ronny (2015)
    The total least squares (TLS) method is a successful approach for linear problems if both the right-hand side and the operator are contaminated by some noise. For ill-posed problems, a regularisation strategy has to be considered to stabilise the computed solution. Recently a double regularised TLS method was proposed within an infinite dimensional setup and it reconstructs both function and operator, reflected on the bilinear forms Our main focuses are on the design and the implementation of an algorithm with particular emphasis on alternating minimisation strategy, for solving not only the double regularised TLS problem, but a vast class of optimisation problems: on the minimisation of a bilinear functional of two variables.