Browsing by Subject "ammonia"

Sort by: Order: Results:

Now showing items 1-9 of 9
  • Similä, Minna E.; Auranen, Mari; Piirilä, Päivi Liisa (2020)
    Background: A deficiency of muscle phosphofructokinase (PFKM) causes a rare metabolic muscle disease, the Tarui disease (Glycogen storage disease type VII, GSD VII) characterized by exercise intolerance with myalgia due to an inability to use glucose as an energy resource. No medical treatment for GSD VII currently exists. The aim of this study was to determine whether a dietary intervention with excessive fat intake would benefit GSD VII.Patient and Methods: A ketogenic diet (KD) intervention implemented as a modified Atkins diet was established for one patient with PFKM deficiency, with a low late lactate response and very high ammonia levels associated with exercise. We recorded the KD intervention for a total of 5 years with clinical and physiotherapeutic evaluations and regular laboratory parameters. Cardiopulmonary exercise testing, including breath gas analysis and venous lactate and ammonia measurements, was performed before KD and at 3, 8 months and 5 years after initiation of KD.Results: During the 5 years on KD, the patient's muscle symptoms had alleviated and exercise tolerance had improved. In exercise testing, venous ammonia had normalized, the lactate profile remained similar, but oxygen uptake and mechanical efficiency had increased and parameters showing ventilation had improved.Conclusions: This study is the first to show a long-term effect of KD in GSD VII with an alleviation of muscle symptoms, beneficial effects on breathing, and improvement in exercise performance and oxygen uptake. Based on these findings, KD can be recommended under medical and nutritional supervision for selected patients with GSD VII, although further research of this rare disease is warranted.
  • Grönroos, Juha; Munther, Joonas; Luostarinen, Sari (Finnish Environment Institute, 2017)
    Reports of the Finnish Environment Institute 37/2017
    Agricultural gaseous nitrogen emissions are mostly related to manure management, grazing and fertilisation. These emissions include ammonia (NH3), nitrous oxide (N2O), nitric oxide (NO) and di-nitrogen (N2). Most of the non-methane volatile organic compounds (NMVOC) emissions originate from livestock farming, but also from cultivated crops. All these emissions are inventoried and reported for the UN Convention on Long-range Transboundary Air Pollution (CLRTAP), EU National Emission Ceilings Directive (2001/81/EC) and the UN Framework on Climate Change (UNFCC). In Finland, a specific national model for gaseous nitrogen emissions from agriculture has been used for the inventory since 1998. The revised calculation model documented here is tied to the Finnish Normative Manure System, which provides data on manure quality and quantity for various livestock categories. The emission calculation follows the flow of total ammoniacal nitrogen (TAN) and total nitrogen (N) through the manure management systems, starting from excretion and ending at manure spreading. The main manure management phases considered in the calculation are livestock housing, manure storing and manure field application. The calculation also embeds estimations on emissions from grazing and outdoor yards, as well as emissions from the use of mineral fertilisers. The nitrogen calculation model provides data for the calculation of agricultural NMVOC emissions. All calculations are constructed in compliance with the Tier 2 method of the EMEP/EEA emission inventory guidebook (2016).
  • Twigg, Marsailidh M.; Berkhout, Augustinus J. C.; Cowan, Nicholas; Crunaire, Sabine; Dammers, Enrico; Ebert, Volker; Gaudion, Vincent; Haaima, Marty; Häni, Christoph; John, Lewis; Jones, Matthew R.; Kamps, Bjorn; Kentisbeer, John; Kupper, Thomas; Leeson, Sarah R.; Leuenberger, Daiana; Lüttschwager, Nils O. B.; Makkonen, Ulla; Martin, Nicholas A.; Missler, David; Mounsor, Duncan; Neftel, Albrecht; Nelson, Chad; Nemitz, Eiko; Oudwater, Rutger; Pascale, Celine; Petit, Jean-Eudes; Pogany, Andrea; Redon, Nathalie; Sintermann, Jörg; Stephens, Amy; Sutton, Mark A.; Tang, Yuk S.; Zijlmans, Rens; Braban, Christine F.; Niederhauser, Bernhard (Copernicus Publications, 2022)
    Atmospheric measurement techniques
    Ammonia (NH3) in the atmosphere affects both the environment and human health. It is therefore increasingly recognised by policy makers as an important air pollutant that needs to be mitigated, though it still remains unregulated in many countries. In order to understand the effectiveness of abatement strategies, routine NH3 monitoring is required. Current reference protocols, first developed in the 1990s, use daily samplers with offline analysis; however, there have been a number of technologies developed since, which may be applicable for high time resolution routine monitoring of NH3 at ambient concentrations. The following study is a comprehensive field intercomparison held over an intensively managed grassland in southeastern Scotland using currently available methods that are reported to be suitable for routine monitoring of ambient NH3. In total, 13 instruments took part in the field study, including commercially available technologies, research prototype instruments, and legacy instruments. Assessments of the instruments' precision at low concentrations (< 10 ppb) and at elevated concentrations (maximum reported concentration of 282 ppb) were undertaken. At elevated concentrations, all instruments performed well and with precision (r2 > 0.75). At concentrations below 10 ppb, however, precision decreased, and instruments fell into two distinct groups, with duplicate instruments split across the two groups. It was found that duplicate instruments performed differently as a result of differences in instrument setup, inlet design, and operation of the instrument. New metrological standards were used to evaluate the accuracy in determining absolute concentrations in the field. A calibration-free CRDS optical gas standard (OGS, PTB, DE) served as an instrumental reference standard, and instrument operation was assessed against metrological calibration gases from (i) a permeation system (ReGaS1, METAS, CH) and (ii) primary standard gas mixtures (PSMs) prepared by gravimetry (NPL, UK). This study suggests that, although the OGS gives good performance with respect to sensitivity and linearity against the reference gas standards, this in itself is not enough for the OGS to be a field reference standard, because in field applications, a closed path spectrometer has limitations due to losses to surfaces in sampling NH3, which are not currently taken into account by the OGS. Overall, the instruments compared with the metrological standards performed well, but not every instrument could be compared to the reference gas standards due to incompatible inlet designs and limitations in the gas flow rates of the standards. This work provides evidence that, although NH3 instrumentation have greatly progressed in measurement precision, there is still further work required to quantify the accuracy of these systems under field conditions. It is the recommendation of this study that the use of instruments for routine monitoring of NH3 needs to be set out in standard operating protocols for inlet setup, calibration, and routine maintenance in order for datasets to be comparable.
  • Lee, Shan-Hu; Gordon, Hamish; Yu, Huan; Lehtipalo, Katrianne; Haley, Ryan; Li, Yixin; Zhang, Renyi (2019)
    New particle formation (NPF) represents the first step in the complex processes leading to formation of cloud condensation nuclei. Newly formed nanoparticles affect human health, air quality, weather, and climate. This review provides a brief history, synthesizes recent significant progresses, and outlines the challenges and future directions for research relevant to NPF. New developments include the emergence of state-of-the-art instruments that measure prenucleation clusters and newly nucleated nanoparticles down to about 1 nm; systematic laboratory studies of multicomponent nucleation systems, including collaborative experiments conducted in the Cosmics Leaving Outdoor Droplets chamber at CERN; observations of NPF in different types of forests, extremely polluted urban locations, coastal sites, polar regions, and high-elevation sites; and improved nucleation theories and parameterizations to account for NPF in atmospheric models. The challenges include the lack of understanding of the fundamental chemical mechanisms responsible for aerosol nucleation and growth under diverse environments, the effects of SO2 and NOx on NPF, and the contribution of anthropogenic organic compounds to NPF. It is also critical to develop instruments that can detect chemical composition of particles from 3 to 20 nm and improve parameterizations to represent NPF over a wide range of atmospheric conditions of chemical precursor, temperature, and humidity. Plain Language Summary In the atmosphere, invisible to the human eye, there are many microscopic particles, or nanoparticles, that affect human health, air quality, and climate. We do not fully understand the chemical processes that allow these fine particles to form and be suspended in the air nor how they influence heat flow in Earth's atmosphere. Laboratory experiments, field observations, and modeling simulations have all shown different results for how these particles behave. These inconsistencies make it difficult to accurately represent the processes of new particle formation in regional and global atmospheric models. Scientists still need to develop instruments that can measure the smallest range of nanoparticles and to find ways to describe particle formation that allow for differences in temperature, humidity, and level of pollution.
  • Apalkova, Irina (Helsingfors universitet, 2013)
    This retrospective study was done to find out the prevalence of different liver diseases in dogs and cats in the Small Animal University hospital during a four year period 2007-10. This information is needed to plan further research on liver diseases, and the main source of interest for this are canine familial liver diseases associated with certain breeds. Therefore, the study looked for breeds that might be overrepresented with liver diseases. Breeds often described with familial liver diseases are e.g. Doberman, Dalmatian, cocker spaniel, Bedlington terrier and West Highland white terrier. Finally, this study looks into the diagnostic procedures for liver diseases in the hospital to compare them with current recommendations. The patients' information was searched by different criteria from the hospitals' patient database (Provet). The initially found patients were included if they had been diagnosed or suspected with a liver disease, which also includes diseases of biliary tract or hepatic vasculature. Of these patients, basic information, possible diagnosis, relevant laboratory findings, ultrasound findings and biopsy results were collected. The data was collected in a worksheet in MS Excel and further analysed there and in PASW Statistics 18.0. 337 dogs and 36 cats were eventually included in the study, resulting in 1.24 % and 0.41 % prevalence of all liver diseases in the hospital population in dogs and cats respectively. 55 patients (15 %) did not get a certain diagnosis, although they were definitely found to have had some kind of liver disease. Primary diagnosis of 28 patients was something other than liver diseases, though liver was also affected to some extent. The most common hepatobiliary diseases in dogs were vascular disorders (80 patients and in cats cholangitis and cholangiohepatitis (11 patients). As for breed distribution, in dogs with vascular disorders miniature breeds stood out with extrahepatic portosystemic shunts, especially miniature schnauzers (2.13 % prevalence within breed). Shetland sheepdogs stood out with liver diseases in general (3.65 % prevalence within breed) and especially with the diseases of the biliary tract (4 dogs). There were not as many dogs of known risk breed f chronic hepatitis as one would have expected, no breed was represented by over 5 dogs with chronic liver diseases. Copper accumulation was found in only 6 dogs, all of different breeds. Serum ALP, ALT, total protein, albumin, urea and bilirubin had been measured from nearly all of the patients in this study. Bile acids were measured from 66 % (fasting sample) and 27 % (post prandial sample) and ammonia from 60 % of the patients. Laboratory findings and their usefulness in diagnostics of different hepatobiliary diseases in dogs and cats were in agreement with what is described by scientific reports. 86.3 % of the patients had been studied with ultrasound, which was often useful, especially as a way to support the diagnosis. The most used biopsy method was fine-needle cytology which was taken from 93 patients, laparotomy with biopsy was done to 42 patients and laparoscopy to 8 patients. This study showed that hepatobiliary diseases were relatively common in dogs in our hospital, and vascular disorders are the most common of those. In cats hepatobiliary diseases are quite rare. There was not a high number of dogs of the breeds that are described to have increased tendency of developing chronic hepatitis presented to the hospital. Considering further studies on breed-associated hepatobiliary diseases, this study can perhaps suggest miniature schnauzers with extrahepatic portosystemic shunts, Shetland sheepdogs with biliary tract diseases or cocker spaniels with chronic or chronic active hepatitis. The study also showed that, as could be expected, liver diseases often require a lot, usually a biopsy, to be properly diagnosed, and thus many patients' diagnosis remains incomplete. In this hospital diagnosis is often thorough, when it is needed. The use of laparoscopy as a method to take a liver biopsy had not yet been that popular, but it may become more so in the future.
  • Stefanski, T.; Ahvenjarvi, S.; Vanhatalo, A.; Huhtanen, P. (2020)
    The present study was conducted to investigate ruminal N metabolism in dairy cows using N-15 labeled N sources [ammonia N (AN), soluble non-ammonia N (SNAN) from rapeseed meal, and insoluble nonammonia N (NAN) from rapeseed meal]. To describe the observed pattern of N-15 transactions in the rumen, dynamic compartmental models were developed. The experiment consisted of 3 experimental treatments allocated to 4 cows according to a changeover design. The results from 2 treatments (AN and rapeseed meal SNAN) are reported in this paper. Ammonia N and rapeseed SNAN, both labeled with N-15, were administered intraruminally. Rumen evacuations in combination with grab samples from the rumen contents were used to determine ruminal N pool sizes. The N-15-atom% excess was determined in N fractions of rumen digesta samples that were distributed between 0 and 82 h after dosing. For the AN treatment, a 2-compartment model was developed to describe the observed pattern in N-15-atom% excess pool sizes of AN and bacterial NJ and to estimate kinetic parameters of ruminal N-15 transactions. For the SNAN treatment, an additional compartment of SNAN was included in the model. Model simulations were used to estimate N fluxes in the rumen. Both models described the observed pattern of N-15-atom% excess pool sizes accurately, based on small residuals between observed and predicted values. Immediate increases in N-15-atom% excess of bacterial N with AN treatment suggested that microbes absorbed AN from extracellular pools rapidly to maintain sufficient intracellular concentrations. Proportionally 0.69 of the AN dose was recovered as NAN flow from the rumen. A rapid disappearance of labeled SNAN from rumen fluid and appearance in bacterial N pool indicated that, proportionally, 0.56 of SNAN was immediately either adsorbed to bacterial cell surfaces or taken up to intracellular pools. Immediate uptake of labeled SNAN was greater than that of AN (proportionally 0.56 vs. 0.16 of the dose). Degradation rate of SNAN to AN was relatively slow (0.46/h), but only 0.08 of the SNAN dose was estimated to escape ruminal degradation because of rapid uptake by the bacteria. Overall, losses of the N-15 dose as AN absorption and outflow from the rumen were higher (P <0.01) for the AN than the SNAN treatment (0.31 and 0.11 of the dose, respectively). Consequently, recovery as NAN flow was greater for SNAN than for AN treatment (0.89 vs. 0.69 of the dose). Estimated rate of bacterial N recycling to AN was on average 0.006/h, which suggests that N losses due to intraruminal recycling are small in dairy cows fed at high intake levels. We conclude that SNAN isolated from rapeseed meal had better ruminal N utilization efficiency than AN, as indicated by smaller rurninal N losses as AN (0.11 vs. 0.31 of the dose) and greater bacterial N flow (0.81 vs. 0.69 of the dose). Furthermore, the current findings indicate that rapid adsorption of soluble proteins to bacterial cells plays an important role in ruminal N metabolism.
  • Chen, W.; Metsala, M.; Vaittinen, O.; Halonen, L. (2014)
  • Piirilä, Päivi; Similä, Minna E.; Palmio, Johanna; Wuorimaa, Tomi; Ylikallio, Emil; Sandell, Satu; Haapalahti , Petri; Uotila, Lasse; Tyynismaa, Henna; Udd, Bjarne; Auranen, Mari (2016)
    Introduction: Glycogen storage disease V (GSDV, McArdle disease) and GSDVII (Tarui disease) are the most common of the rare disorders of glycogen metabolism. Both are associated with low lactate levels on exercise. Our aim was to find out whether lactate response associated with exercise testing could distinguish between these disorders. Methods: Two siblings with Tarui disease, two patients with McArdle disease and eight healthy controls were tested on spiroergometric exercise tests with follow-up of venous lactate and ammonia. Results: A late increase of lactate about three times the basal level was seen 10-30 min after exercise in patients with Tarui disease being higher than in McArdle disease and lower than in the controls. Ammonia was increased in Tarui disease. Discussion: Our results suggest that follow-up of lactate associated with exercise testing can be utilized in diagnostics to distinguish between different GSD diseases.