Browsing by Subject "ammoniakki"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Grönroos, Juha; Munther, Joonas; Luostarinen, Sari (Finnish Environment Institute, 2017)
    Reports of the Finnish Environment Institute 37/2017
    Agricultural gaseous nitrogen emissions are mostly related to manure management, grazing and fertilisation. These emissions include ammonia (NH3), nitrous oxide (N2O), nitric oxide (NO) and di-nitrogen (N2). Most of the non-methane volatile organic compounds (NMVOC) emissions originate from livestock farming, but also from cultivated crops. All these emissions are inventoried and reported for the UN Convention on Long-range Transboundary Air Pollution (CLRTAP), EU National Emission Ceilings Directive (2001/81/EC) and the UN Framework on Climate Change (UNFCC). In Finland, a specific national model for gaseous nitrogen emissions from agriculture has been used for the inventory since 1998. The revised calculation model documented here is tied to the Finnish Normative Manure System, which provides data on manure quality and quantity for various livestock categories. The emission calculation follows the flow of total ammoniacal nitrogen (TAN) and total nitrogen (N) through the manure management systems, starting from excretion and ending at manure spreading. The main manure management phases considered in the calculation are livestock housing, manure storing and manure field application. The calculation also embeds estimations on emissions from grazing and outdoor yards, as well as emissions from the use of mineral fertilisers. The nitrogen calculation model provides data for the calculation of agricultural NMVOC emissions. All calculations are constructed in compliance with the Tier 2 method of the EMEP/EEA emission inventory guidebook (2016).
  • Grönroos, Juha; Mattila, Pasi; Regina, Kristiina; Nousiainen, Jouni; Perälä, Paula; Saarinen, Kristina; Mikkola-Pusa, Johanna (Finnish Environment Institute, 2009)
    The Finnish Environment 8/2009
    Agriculture is the main source of ammonia (NH3) emissions in Finland comprising ca. 90% of the total emissions annually. Agriculture is also an important source of nitrous oxide (N2O), a greenhouse gas for which agriculture is responsible for ca. 50% of emissions. The main source for ammonia is livestock manure whereas for N2O its importance is much smaller. However, the same activity data are needed to assess both NH3 and direct N2O emissions from animal husbandry. In addition to this, indirect emissions of N2O are calculated based on NH3 and NO emissions. NH3 and N2O emissions are annually reported according to international reporting classifications. The aims of the study were 1) to construct a calculation model for gaseous agricultural nitrogen emissions thereby developing and updating the emission calculation procedure to better reflect the development of these emissions in Finland, and 2) to improve correspondence of the emission inventory reporting with the reporting classifications. In 2007, the Finnish emissions of ammonia from agricultural sources totalled 30,686 tonnes, of which more than 60% originated from cattle manure. Time series for ammonia emissions from agriculture show that there have been no large changes in the total emissions during the last two decades. Despite the decreased number of cattle during that period the emissions have remained near the present level, mainly because of the increased nitrogen excretion of cattle. Emission projections for the years 2008–2050 show no significant changes in emissions in the future. As for ammonia, no significant changes for nitrous oxide emissions from animal husbandry have taken place, and no big changes can be expected in the future as long as there are no drastic alterations in animal production. Despite the development of emission modelling, the emission estimates still include significant sources of uncertainty, which is mainly related to information on the distribution of manure management systems and the use of different manure application methods as well as to information on ammonia evaporation in different manure management phases in Finland.
  • Karvosenoja, Niko (Finnish Environment Institute, 2008)
    Monographs of the Boreal Environment Research 32
    Air pollution emissions are produced in a wide variety of sources. They often result in detrimental impacts on both environments and human populations. To assess the emissions and impacts of air pollution, mathematical models have been developed. This study presents results from the application of an air pollution emission model, the Finnish Regional Emission Scenario (FRES) model, that covers the emissions of sulfur dioxide (SO2), nitrogen oxides (NOx), ammonia (NH3), non-methane volatile organic compounds (NMVOCs) and primary particulate matter (TSP, PM10, PM2.5 and PM1) in high 1 ´ 1 km2 spatial resolution over the area of Finland. The aims of the study were to identify key emission sources in Finland at present and in the future, to assess the effects of climate policies on air pollution, and to estimate emission reduction potentials and costs. Uncertainties in emission estimates were analyzed. Finally, emission model characteristics for use in different air pollution impact applications were discussed.The main emission sources in Finland are large industrial and energy production plants for SO2 (64% of 76 Gg a-1 total in the year 2000). Traffic vehicles are the main contributors for NOx (58% of 206 Gg a-1), NMVOCs (54% of 152 Gg a-1) and primary PM2.5 (26% of 31 Gg a-1) emissions. Agriculture is the key source for NH3 (97% of 33 Gg a-1). Other important sources are domestic wood combustion for primary PM2.5 (25%) and NMVOCs (12%), and fugitive dust emissions from traffic and other activities for primary PM10 (30% of 46 Gg a-1).In the future, the emissions of traffic vehicle exhaust will decrease considerably, by 76% (NMVOCs), 74% (primary PM2.5) and 60% (NOx), from 2000 to 2020, because of tightening emission legislations. Rather smaller decrease is anticipated in the emissions of large combustion plants, depending on future primary energy choices. Sources that are not subject to tight emission standards, e.g. domestic combustion and traffic-induced fugitive dust (i.e. non-exhaust), pose a risk for increasing emissions.The majority of measures to abate climate change, e.g. energy saving and non-combustion based energy production, lead to co-benefits as reduced air pollution emissions, especially of SO2 (20% to 28% reduction). However, promotion of domestic wood combustion poses a risk for increase in PM2.5 and NMVOCs emissions. Further emission reductions with feasible control costs are possible mainly for PM2.5 in small energy production plants and domestic combustion sources. Highest emission uncertainties were estimated for primary PM emission factors of domestic wood combustion, traffic non-exhaust sources and small energy production plants.The most important characteristics of emission models are correct location information of flue gas stacks of large plants for the assessment of acidification, and description of small polluters with high spatial resolution when assessing impacts on populations. Especially primary PM2.5 emissions originate to a considerable degree from small low-altitude sources in urban areas, and therefore it is important to be able to assess the impacts that take place near the emission sources. Detailed descriptions of large plants and 1 ´ 1 km2 spatial resolution for small emission sources applied in the FRES model enable its use in the assessment of various national environmental impacts and their reduction possibilities.The main contribution of this work was the development of a unique modeling framework to assess emission scenarios of multiple air pollutants in high sectoral and spatial resolution in Finland. The developed FRES model provides support for Finnish air pollution polices and a tool to assess the co-benefits and trade-offs of climate change strategies on air pollution.
  • Yrjölä, Karoliina (Helsingin yliopisto, 2018)
    Most of the ammonia emissions caused by agriculture is a result of manure management. Acidification has been indicated to be an effective method to reduce ammonia emissions from slurry. The main target of this study was to compare the effect of acidified slurry on spring wheat yield. The objective was also to investigate how much the slurry acidification improves the crop nitrogen intake. The field experiment of this study was done in the summer 2017 in Helsinki. There were four members in the experiment; unfertilized zero plot, NPK -control plot, a plot with unacidified slurry and a plot with acidifield slurry. The slurry that was used in this study was from a sow piggery. The amount of the sulphuric acid needed to acidify the slurry was calculated on the strength of the titration tests that were done in laboratory. The slurry was spread on the field surface in early June when the crop was in 2-3 leaf stage. The slurry was acidified just before the spreading. According to the results, in the circumtances where this study was taken the slurry acidification did not improve the growing conditions of spring wheat. The acidification of slurry may improve the crop nitrogen intake, but the benefit varies in different years and it depends on the conditions of the growing season. For example if there is a lot of soluble nitrogen in the arable land, the effect of acidificated slurry on crop yield can not be seen. Also the quality of the slurry and the circumstances of the spreading time affect to the benefits of the slurry acidification. Before the acidification can be carried out widely in farms there must be done more research. One option could be that a contractor who is familiar with the acidification technique and knows how to handle sulphuric acid would do the acidification in farms and could do also the spreading more cost-effective.
  • Sten, Melissa (Helsingin yliopisto, 2018)
    Fyysisen suorituskyvyn lasku voi johtua monesta eri syystä, joista yhtenä, joskin harvinaisempana, ovat perinnölliset lihassairaudet. Lihasaineenvaihdunnan häiriöissä lihasten aineenvaihduntareaktiot eivät toimi normaalisti, mikä voidaan havaita poikkeavina aineenvaihduntatuotteiden pitoisuuksina veressä. Tämän tutkielman tarkoituksena oli selvittää, miten lihasaineenvaihdunnalle keskeiset markkerit laktaatti ja ammoniakki käyttäytyvät viidessä perinnöllisessä lihassairaudessa maksimaalisen rasituksen ja sen jälkeisen palautumisvaiheen aikana. Tuloksia verrattiin terveeseen verrokkiryhmään. Tutkielman aineistossa edustettuina olivat mitokondionaalisiin myopatioihin kuuluvat progressiivinen eksterni oftalmoplegia (PEO) ja mitokondriaalinen enkefalopatia (MELAS), lantio-hartia-dystrofioihin kuuluva anoktaminopatia (ANO5), sekä metabolisiin myopatioihin kuuluvat McArdlen tauti ja Taruin tauti. Kaikki koehenkilöt suorittivat maksimaalisen spiroergometriatutkimuksen, jonka aikana kerätyistä laskimoverinäytteistä analysoitiin muun muassa laktaatti- ja ammoniakkipitoisuuksia. Aikaisempia tutkimustuloksia tukien kaikilla potilasryhmillä havaittiin spiroergometriatutkimuksessa merkkejä alentuneesta suorituskyvystä. Merkittävin löydös oli kuitenkin se, että eri tautiryhmien laktaatti- ja ammoniakkiprofiilit poikkesivat selkeästi paitsi verrokkiryhmästä myös toisistaan. Erityisen selvästi erot näkyivät laktaatin ja ammoniakin suhteessa. Glykogeenimetabolian häiriöihin kuuluvissa McArdlen taudissa ja Taruin taudissa laktaatin ja ammoniakin suhde oli sekä rasituksessa että sen jälkeisessä palautumisvaiheessa selvästi matalampi kuin verrokeilla tai muilla potilasryhmillä. Mitokondrionaalisia myopatioita PEO:a ja MELAS:ia sairastavilla potilailla laktaatti-ammoniakkisuhde oli puolestaan kaikissa mittausvaiheissa verrokkeja korkeampi, kun taas ANO5-potilailla suhde pysyi koko ajan jotakuinkin verrokkien tasolla. Tulokset tukevat spiroergometriatutkimuksen sekä sen aikana määritettyjen laktaatti- ja ammoniakkipitoisuuksien käyttökelpoisuutta perinnöllisten lihassairauksien diagnostisena apuvälineenä. Erityisesti laktaatin ja ammoniakin suhde vaikuttaa käyttökelpoiselta. Sitä on kuitenkin tutkittu toistaiseksi vasta vähän, joten jatkotutkimuksia ja suurempia potilasaineistoja tarvitaan.
  • Laiho, Satu (Helsingfors universitet, 2017)
    Uloshengityksen on jo kauan tiedetty kertovan hengittäjän terveydestä. Hengityksessä onkin arvioitu olevan tuhansia pelkästään endogeenista alkuperää olevia yhdisteitä, mutta vain muutamia niistä on tutkittu riittävästi, jotta niiden käyttäminen kliinisessä diagnostiikassa on tullut mahdolliseksi. Hengitysanalyysin potentiaali on siis edelleen laajalti hyödyntämättä, vaikka sen edut esimerkiksi verianalyysiin nähden ovat ilmeiset. Uloshengitys on näytematriisina yksinkertainen ja sen kerääminen on nopeaa, kivutonta sekä helppoa, ja näytteet on mahdollista analysoida vain muutamissa minuuteissa. Hengitysanalyysin potentiaali diagnostisena menetelmänä perustuu keuhkorakkuloiden ja verenkieron väliseen ohueen kapillaarikalvoon, jonka läpi monet verenkierron yhdisteet pääsevät haihtumaan suoraan uloshengitykseen. Monilla yhdisteillä hengityksessä esiintyvät pitoisuudet heijastavat siis suoraan veren yhdistepitoisuuksia. Yksi kiinnostusta herättänyt potentiaalinen biomerkkiaine on ammoniakki, joka on yhdistetty muun muassa munuaisten vajaatoimintaan ja veren kohonneisiin ureapitoisuuksiin. Poikkeuksellisen emäsluonteensa takia, hengityksen ammoniakin erittymismekanismin on kuitenkin arveltu poikkeavan muista endogeenisista yhdisteistä, ja yhdisteen on epäilty päätyvän hengitykseen veren sijasta syljestä haihtumalla. Epäselvyys ammoniakin tuottomekanismista onkin pitkään hidastanut yhdisteen analyysinpotentiaalin ymmärtämistä. Hengityksen lisäksi myös sylkianalyysit ovat herättäneet huomioita syljen helpon kerättävyyden ja erityisen koostumuksen ansiosta. Erityisesti syljen ureapitoisuudet on yhdistetty hengityksen ammoniakin tapaan veren ureapitoisuuksiin ja munuaisten toimintaan, minkä takia myös syljen ureaa on pidetty potentiaalisena biomerkkiaine. Tutkielmassa käsitellään hengityksen ammoniakin sekä syljen ammoniakin ja urean muodostumista sekä arvioidaan niiden yhteyttä elimistön ammoniakki- ja ureapitoisuuksiin. Lisäksi tutkielma käsittelee hengityksen ja syljen mittauksessa huomioon otettavia asioita sekä itse mittauksien suoritusta. Tutkielman tutkimusosuutta varten 12:sta dialyysiin osallistuvalta munuaisten vajaatoimintapotilaalta mitattiin hengityksen ja syljen ammoniakkipitoisuutta sekä veren ja syljen ureapitoisuutta hoidon ajan. Tuloksien perusteella pyrittiin arvioimaan hengityksen ammoniakin alkuperää sekä syljen urean ja hengityksen ammoniakin kykyä mitata munuaisten vajaatoimintapotilaiden ureemista tilaa sekä dialyysihoidon tehoa.