Browsing by Subject "animal"

Sort by: Order: Results:

Now showing items 1-7 of 7
  • Saari, Sini; Kemppainen, Esa; Tuomela, Tero; Oliveira, M.T.; Dufour, E.; Jacobs, H.T. (2019)
    The mitochondrial alternative oxidase, AOX, present in most eukaryotes apart from vertebrates and insects, catalyzes the direct oxidation of ubiquinol by oxygen, by-passing the terminal proton-motive steps of the respiratory chain. Its physiological role is not fully understood, but it is proposed to buffer stresses in the respiratory chain similar to those encountered in mitochondrial diseases in humans. Previously, we found that the ubiquitous expression of AOX from Ciona intestinalis in Drosophila perturbs the development of flies cultured under low-nutrient conditions (media containing only glucose and yeast). Here we tested the effects of a wide range of nutritional supplements on Drosophila development, to gain insight into the physiological mechanism underlying this developmental failure. On low-nutrient medium, larvae contained decreased amounts of triglycerides, lactate, and pyruvate, irrespective of AOX expression. Complex food supplements, including treacle (molasses), restored normal development to AOX-expressing flies, but many individual additives did not. Inhibition of AOX by treacle extract was excluded as a mechanism, since the supplement did not alter the enzymatic activity of AOX in vitro. Furthermore, antibiotics did not influence the organismal phenotype, indicating that commensal microbes were not involved. Fractionation of treacle identified a water-soluble fraction with low solubility in ethanol, rich in lactate and tricarboxylic acid cycle intermediates, which contained the critical activity. We propose that the partial activation of AOX during metamorphosis impairs the efficient use of stored metabolites, resulting in developmental failure. © 2019 The Authors. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology Published by Wiley Periodicals, Inc.
  • Valros, Anna Elisabet; Hänninen, Laura Talvikki (2018)
    Veterinary students face several ethical challenges during their curriculum. We used the Animal Ethics Dilemma to study animal ethical views of Finnish veterinary students, and also asked them to score the level of pain perception in 13 different species. Based on the 218 respondents, the utilitarian view was the dominating ethical view. Mammals were given higher pain scores than other animals. The proportion of the respect for nature view correlated negatively, and that of the animal rights view positively, with most animal pain scores. Fifth year students had a higher percentage of contractarian view, as compared to 1st and 3rd year students, but this might have been confounded by their age. Several pain perception scorings increased with increasing study year. We conclude that the utilitarian view was clearly dominating, and that ethical views differed only slightly between students at different stages of their studies. Higher pain perception scorings in students at a later stage of their studies might reflect an increased knowledge of animal capacities.
  • Balic, A. (Humana press, 2019)
    Methods in Molecular Biology
    Continuous growth of the rodent incisor is enabled by epithelial and mesenchymal stem cells (ESCs and MSCs) which unceasingly replenish enamel and dentin, respectively, that wear by persistent animal gnawing. Lineage tracing studies have provided evidence that ESCs contribute to all epithelial lineages of the tooth in vivo. Meanwhile, in the mouse incisor, MSCs continuously contribute to odontoblast lineage and tooth growth. However, in vitro manipulation of ESCs has shown little progress, mainly due to lack of appropriate protocol to successfully isolate, culture, expand, and differentiate ESCs in vitro without using the co-culture system. In this chapter we describe the isolation of the Sox2-GFP+ cell population that is highly enriched in ESCs. Isolated cells can be used for various types of analyses, including in vitro culture, single cell-related analyses, etc. Furthermore, we describe ways to obtain populations enriched in the incisor MSCs using FACS sorting of antibody-labeled cells. Easily accessible FACS sorting enables easy and relatively fast isolation of the cells labeled by the fluorescent protein. © Springer Science+Business Media, LLC, part of Springer Nature 2019.
  • Muha, Villo; Williamson, Ritchie; Hills, Rachel; McNeilly, A.D.; McWilliams, T.G.; Alonso, Jana; Schimpl, Marianne; Leney, Aneika C.; Heck, Albert J.R.; Sutherland, Calum; Read, Kevin D.; McCrimmon, Rory J.; Brooks, S.P.; Van Aalten, Daan M.F. (2019)
    O-GlcNAcylation is an abundant post-translational modification in the nervous system, linked to both neurodevelopmental and neurodegenerative disease. However, the mechanistic links between these phenotypes and site-specific O-GlcNAcylation remain largely unexplored. Here, we show that Ser517 O-GlcNAcylation of the microtubule-binding protein Collapsin Response Mediator Protein-2 (CRMP2) increases with age. By generating and characterizing a Crmp2S517A knock-in mouse model, we demonstrate that loss of O-GlcNAcylation leads to a small decrease in body weight and mild memory impairment, suggesting that Ser517 O-GlcNAcylation has a small but detectable impact on mouse physiology and cognitive function. © 2019 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License, which permits unrestricted use, provided the original author and source are credited.
  • Santos-Cortez, R.L.P.; Bhutta, M.F.; Earl, J.P.; Hafrén, Lena; Jennings, M.; Mell, J.C.; Pichichero, M.E.; Ryan, A.F.; Tateossian, Hilda; Ehrlich, G.D. (2020)
    Objective: To review the most recent advances in human and bacterial genomics as applied to pathogenesis and clinical management of otitis media. Data sources: PubMed articles published since the last meeting in June 2015 up to June 2019. Review methods: A panel of experts in human and bacterial genomics of otitis media was formed. Each panel member reviewed the literature in their respective fields and wrote draft reviews. The reviews were shared with all panel members, and a merged draft was created. The panel met at the 20th International Symposium on Recent Advances in Otitis Media in June 2019, discussed the review and refined the content. A final draft was made, circulated, and approved by the panel members. Conclusion: Trans-disciplinary approaches applying pan-omic technologies to identify human susceptibility to otitis media and to understand microbial population dynamics, patho-adaptation and virulence mechanisms are crucial to the development of novel, personalized therapeutics and prevention strategies for otitis media. Implications for practice: In the future otitis media prevention strategies may be augmented by mucosal immunization, combination vaccines targeting multiple pathogens, and modulation of the middle ear microbiome. Both treatment and vaccination may be tailored to an individual's otitis media phenotype as defined by molecular profiles obtained by using rapidly developing techniques in microbial and host genomics. © 2020 Elsevier B.V.
  • Nadjar, Agnes; Wigren, Henna-Kaisa M.; Tremblay, Marie-Eve (2017)
    Sleep serves crucial learning and memory functions in both nervous and immune systems. Microglia are brain immune cells that actively maintain health through their crucial physiological roles exerted across the lifespan, including phagocytosis of cellular debris and orchestration of neuroinflammation. The past decade has witnessed an explosive growth of microglial research. Considering the recent developments in the field of microglia and sleep, we examine their possible impact on various pathological conditions associated with a gain, disruption, or loss of sleep in this focused mini-review. While there are extensive studies of microglial implication in a variety of neuropsychiatric and neurodegenerative diseases, less is known regarding their roles in sleep disorders. It is timely to stimulate new research in this emergent and rapidly growing field of investigation.
    The exposure to amoxicillin has been associated with molar incisor hypomineralization. This study aimed to determine if amoxicillin disturbs the enamel mineralization in in vivo experiments. Fifteen pregnant rats were randomly assigned into three groups to received daily phosphatase-buffered saline or amoxicillin as either 100 or 500 mg/kg. Mice received treatment from day 13 of pregnancy to day 40 postnatal. After birth, the offsprings from each litter continued to receive the same treatment according to their respective group. Calcium (Ca) and phosphorus (P) content in the dental hard tissues were analyzed from 60 upper first molars and 60 upper incisors by the complexometric titration method and colorimetric analysis using a spectrophotometer at 680 nm, respectively. Lower incisors were analyzed by X-ray microtomography, it was measured the electron density of lingual and buccal enamel, and the enamel and dentin thickness. Differences in Ca and P content and electron density among the groups were analyzed by one-way ANOVA. There was no significant difference on enamel electron density and thickness among the groups (p > 0.05). However, in incisors, the higher dose of amoxicillin decreased markedly the electron density in some rats. There were no statistically significant differences in Ca (p = 0.180) or P content (p = 0.054), although the higher dose of amoxicillin could affect the enamel in some animals. The amoxicillin did not significantly alter the enamel mineralization and thickness in rats. © 2020