Browsing by Subject "antibody-drug conjugates"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Karsten, Lennard; Janson, Nils; Le Joncour, Vadim; Alam, Sarfaraz; Müller, Benjamin; Tanjore Ramanathan, Jayendrakishore; Laakkonen, Pirjo; Sewald, Norbert; Mueller, Kristian M. (2022)
    Epidermal growth factor receptor (EGFR) is a validated tumor marker overexpressed in various cancers such as squamous cell carcinoma (SSC) of the head and neck and gliomas. We constructed protein-drug conjugates based on the anti-EGFR Designed Ankyrin Repeat Protein (DARPin) E01, and compared the bivalent DARPin dimer (DD1) and a DARPin-Fc (DFc) to the monomeric DARPin (DM) and the antibody derived scFv425-Fc (scFvFc) in cell culture and a mouse model. The modular conjugation system, which was successfully applied for the preparation of protein-drug and -dye conjugates, uses bio-orthogonal protein-aldehyde generation by the formylglycine-generating enzyme (FGE). The generated carbonyl moiety is addressed by a bifunctional linker with a pyrazolone for a tandem Knoevenagel reaction and an azide for strain-promoted azide-alkyne cycloaddition (SPAAC). The latter reaction with a PEGylated linker containing a dibenzocyclooctyne (DBCO) for SPAAC and monomethyl auristatin E (MMAE) as the toxin provided the stable conjugates DD1-MMAE (drug-antibody ratio, DAR = 2.0) and DFc-MMAE (DAR = 4.0) with sub-nanomolar cytotoxicity against the human squamous carcinoma derived A431 cells. In vivo imaging of Alexa Fluor 647-dye conjugates in A431-xenografted mice bearing subcutaneous tumors as the SCC model revealed unspecific binding of bivalent DARPins to the ubiquitously expressed EGFR. Tumor-targeting was verified 6 h post-injection solely for DD1 and scFvFc. The total of four administrations of 6.5 mg/kg DD1-MMAE or DFc-MMAE twice weekly did not cause any sequela in mice. MMAE conjugates showed no significant anti-tumor efficacy in vivo, but a trend towards increased necrotic areas (p = 0.2213) was observed for the DD1-MMAE (n = 5).
  • Sokka, Iris K.; Imlimthan, Surachet; Sarparanta, Mirkka; Maaheimo, Hannu; Johansson, Mikael P.; Ekholm, Filip S. (2021)
    Halogenation can be utilized for the purposes of labeling and molecular imaging, providing a means to, e.g., follow drug distribution in an organism through positron emission tomography (PET) or study the molecular recognition events unfolding by nuclear magnetic resonance (NMR) spectroscopy. For cancer therapeutics, where often highly toxic substances are employed, it is of importance to be able to track the distribution of the drugs and their metabolites in order to ensure minimal side effects. Labeling should ideally have a negligible disruptive effect on the efficacy of a given drug. Using a combination of NMR spectroscopy and cytotoxicity assays, we identify a site susceptible to halogenation in monomethyl auristatin F (MMAF), a widely used cytotoxic agent in the antibody-drug conjugate (ADC) family of cancer drugs, and study the effects of fluorination and chlorination on the physiological solution structure of the auristatins and their cytotoxicity. We find that the cytotoxicity of the parent drug is retained, while the conformational equilibrium is shifted significantly toward the biologically active trans isomer, simultaneously decreasing the concentration of the inactive and potentially disruptive cis isomer by up to 50%. Our results may serve as a base for the future assembly of a multifunctional toolkit for the assessment of linker technologies and exploring bystander effects from the warhead perspective in auristatin-derived ADCs.