Browsing by Subject "antioxidant activity"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Ousaaid, Driss; Ghouizi, Asmae El; Laaroussi, Hassan; Bakour, Meryem; Mechchate, Hamza; Es-safi, Imane; Kamaly, Omkulthom Al; Saleh, Asmaa; Conte, Raffaele; Lyoussi, Badiaa; El Arabi, Ilham (2022)
    This study aims to examine the ability of apple vinegar on phenylhydrazine (PHZ)-induced hemolytic anemia in Wistar rats. In vitro, phenolic and flavonoid content and antioxidant activity were determined. In vivo, phenylhydrazine (10 mg/kg) was injected intravenously into rats for 4 days and then treated with apple vinegar daily by gavage (1 mL/kg) for five weeks. high level of polyphenols and flavonoids (90 +/- 1.66 mg GAE/100 mL and 7.29 +/- 0.23 mg QE/100 mL, respectively) were found in the apple vinegar which gives it a good ability to scavenge free radicals (TAC = 4.22 +/- 0.18 mg AAE/100 mL and DPPH, IC50 = 0.49 +/- 0.004 mu L/ml). The phytochemical composition of apple vinegar revealed the presence of numerous bioactive compounds including arbutin, apigenin, sinapic, ferulic and trans-ferulic acids. The major antioxidant components in apple vinegar were ferulic and trans-ferulic acids (40% and 43%, respectively). PHZ treatment induced changes in platelets, blood cell count, mean corpuscular volume, hemoglobin concentration and mean capsulated hemoglobin. However, the co-administration of apple vinegar revealed its capacity to ameliorate the changes induced by phenylhydrazine. Therefore, apple vinegar use could have a positive impact on the prevention of hemolytic anemia induced by phenylhydrazine due to the antioxidant properties of its major components.
  • Hbika, Asmae; Daoudi, Nour Elhouda; Bouyanzer, Abdelhamid; Bouhrim, Mohamed; Mohti, Hicham; Loukili, El Hassania; Mechchate, Hamza; Al-Salahi, Rashad; Nasr, Fahd A.; Bnouham, Mohamed; Zaid, Abdelhamid (2022)
    Artemisia absinthium L. is one of the plants which has been used in folk medicine for many diseases over many centuries. This study aims to analyze the chemical composition of the Artemisia absinthium ethyl acetate and its aqueous extracts and to evaluate their effect on the pancreatic alpha-amylase enzyme and the intestinal alpha-glucosidase enzyme. In this study, the total contents of phenolic compounds, flavonoids, and condensed tannins in ethyl acetate and the aqueous extracts of Artemisia absinthium leaves were determined by using spectrophotometric techniques, then the antioxidant capacity of these extracts was examined using three methods, namely, the DPPH (2, 2-diphenyl-1picrylhydrazyl) free radical scavenging method, the iron reduction method FRAP, and the beta-carotene bleaching method. The determination of the chemical composition of the extracts was carried out using high-performance liquid chromatography-the photodiode array detector (HPLC-DAD). These extracts were also evaluated for their ability to inhibit the activity of the pancreatic alpha-amylase enzyme, as well as the intestinal alpha-glucosidase enzyme, in vitro and in vivo, thus causing the reduction of blood glucose. The results of this study showed that high polyphenol and flavonoid contents were obtained in ethyl acetate extract with values of 60.34 +/- 0.43 mg GAE/g and 25.842 +/- 0.241 mg QE/g, respectively, compared to the aqueous extract. The results indicated that the aqueous extract had a higher condensed tannin content (3.070 +/- 0.022 mg EC/g) than the ethyl acetate extract (0.987 +/- 0.078 mg EC/g). Ethyl acetate extract showed good DPPH radical scavenging and iron reduction FRAP activity, with an IC50 of 0.167 +/- 0.004 mg/mL and 0.923 +/- 0.0283 mg/mL, respectively. The beta-carotene test indicated that the aqueous and ethyl acetate extracts were able to delay the decoloration of beta-carotene with an inhibition of 48.7% and 48.3%, respectively, which may mean that the extracts have antioxidant activity. HPLC analysis revealed the presence of naringenin and caffeic acid as major products in AQE and EAE, respectively. Indeed, this study showed that the aqueous and ethyl acetate extracts significantly inhibited the pancreatic alpha-amylase and intestinal alpha-glucosidase, in vitro. To confirm this result, the inhibitory effect of these plant extracts on the enzymes has been evaluated in vivo. Oral intake of the aqueous extract significantly attenuated starch- and sucrose-induced hyperglycemia in normal rats, and evidently, in STZ-diabetic rats as well. The ethyl acetate extract had no inhibitory activity against the intestinal alpha-glucosidase enzyme in vivo. The antioxidant and the enzyme inhibitory effects may be related to the presence of naringenin and caffeic acid or their synergistic effect with the other compounds in the extracts.
  • Verni, Michela; Pontonio, Erica; Krona, Annika; Jacob, Sera; Pinto, Daniela; Verardo, Vito; Díaz-de-Cerio, Elixabet; Coda, Rossana; Rizzello, Carlo (2020)
    Brewers' spent grain (BSG) is the major by-product of the brewing industry which remain largely unutilized despite its nutritional quality. In this study, the effects of fermentation on BSG antioxidant potential were analyzed. A biotechnological protocol including the use of xylanase followed by fermentation withLactiplantibacillus plantarum (Lactobacillus plantarum)PU1, PRO17, and H46 was used. Bioprocessed BSG exhibited enhanced antioxidant potential, characterized by high radical scavenging activity, long-term inhibition of linoleic acid oxidation and protective effect toward oxidative stress on human keratinocytes NCTC 2544. Immunolabelling and confocal laser microscopy showed that xylanase caused an extensive cell wall arabinoxylan disruption, contributing to the release of bound phenols molecules, thus available to further conversion through lactic acid bacteria metabolism. To clarify the role of fermentation on the antioxidant BSG potential, phenols were selectively extracted and characterized through HPLC-MS techniques. Novel antioxidant peptides were purified and identified in the most active bioprocessed BSG.
  • Verni, Michela; Rizzello, Carlo Giuseppe; Coda, Rossana (2019)
    Cereals are one of the major food sources in human diet and a large quantity of by-products is generated throughout their processing chain. These by-products mostly consist of the germ and outer layers (bran), deriving from dry and wet milling of grains, brewers’ spent grain originating from brewing industry, or others originating during bread-making and starch production. Cereal industry by-products are rich in nutrients, but still they end up as feed, fuel, substrates for biorefinery, or waste. The above uses, however, only provide a partial recycle. Although cereal processing industry side streams can potentially provide essential compounds for the diet, their use in food production is limited by their challenging technological properties. For this reason, the development of innovative biotechnologies is essential to upgrade these by-products, potentially leading to the design of novel and commercially competitive functional foods. Fermentation has been proven as a very feasible option to enhance the technological, sensory, and especially nutritional and functional features of the cereal industry by-products. Through the increase of minerals, phenolics and vitamins bioavailability, proteins digestibility, and the degradation of antinutritional compounds as phytic acid, fermentation can lead to improved nutritional quality of the matrix. In some cases, more compelling benefits have been discovered, such as the synthesis of bioactive compounds acting as antimicrobial, antitumoral, antioxidant agents. When used for baked-goods manufacturing, fermented cereal by-products have enhanced their nutritional profile. The key factor of a successful use of cereal by-products in food applications is the use of a proper bioprocessing technology, including fermentation with selected starters. In the journey toward a more efficient food chain, biotechnological approaches for the valorization of agricultural side streams can be considered a very valuable help.
  • Abidizadegan, Maryam; Blomster, Jaanika; Fewer, David; Peltomaa, Elina (2022)
    Simple Summary In recent decades, the demand for natural and sustainable bioproducts has risen markedly. Accordingly, microalgae have received much attention as a promising biological resource with great industrial potential, since the microalgal production of biologically active compounds can be boosted by changing their cultivation conditions. Light is one of the key factors in the photosynthetic process, which directly affects cell division and the production of biochemical compounds. This study investigated the effect of light color and the species-specific capability of cryptophyte algae to produce phycoerythrin, phenolic compounds, and exopolysaccharides. The produced biomolecules were further studied for their antioxidant activity. The results showed that changes in light quality significantly affect the biochemical compositions of cryptophyte algae. Moreover, species-specific responses to changes in light quality were identified. The quantity and quality of derived biomolecules from the studied cryptophytes are remarkable and indicate that cryptophytes could be considered promising candidates for producing natural biochemical products for practical applications in various industry sectors, such as food, pharmacy, and cosmetics. The accumulation and production of biochemical compounds in microalgae are influenced by available light quality and algal species-specific features. In this study, four freshwater cryptophyte strains (Cryptomonas ozolinii, C. pyrenoidifera, C. curvata, and C. sp. (CPCC 336)) and one marine strain (Rhodomonas salina) were cultivated under white (control), blue, and green (experimental conditions) lights. Species-specific responses to light quality were detected, i.e., the color of light significantly affected cryptophyte biomass productivity and biochemical compositions, but the optimal light for the highest chemical composition with high antioxidant capacity was different for each algal strain. Overall, the highest phycoerythrin (PE) content (345 mg g(-1) dry weight; DW) was reached by C. pyrenoidifera under green light. The highest phenolic (PC) contents (74, 69, and 66 mg g(-1) DW) were detected in C. curvata under control conditions, in C. pyrenoidifera under green light, and in C. ozolinii under blue light, respectively. The highest exopolysaccharide (EPS) content (452 mg g(-1) DW) was found in C. curvata under the control light. In terms of antioxidant activity, the biochemical compounds from the studied cryptophytes were highly active, with IC50 -values < 50 mu g mL(-1). Thus, in comparison to well-known commercial microalgal species, cryptophytes could be considered a possible candidate for producing beneficial biochemical compounds.
  • Ousaaid, Driss; Laaroussi, Hassan; Mechchate, Hamza; Bakour, Meryem; El Ghouizi, Asmae; Mothana, Ramzi A.; Noman, Omar; Es-safi, Imane; Lyoussi, Badiaa; El Arabi, Ilham (2022)
    The main objective of the current study was to determine the physicochemical properties, antioxidant activities, and alpha-glucosidase and alpha-amylase inhibition of apple vinegar produced by artisanal and industrial methods. Apple vinegar samples were analyzed to identify their electrical conductivity, pH, titratable acidity, total dry matter, Brix, density, mineral elements, polyphenols, flavonoids, and vitamin C. The antioxidant activity of apple vinegar samples was evaluated using two tests, total antioxidant capacity (TAC) and DPPH radical scavenging activity. Finally, we determined alpha-glucosidase and alpha-amylase inhibitory activities of artisanal and industrial apple vinegar. The results showed the following values: pH (3.69-3.19); electrical conductivity (2.81-2.79 mS/cm); titratable acidity (3.6-5.4); ash (4.61-2.90); & DEG;Brix (6.37-5.2); density (1.02476-1.02012), respectively, for artisanal apple vinegar and industrial apple vinegar. Concerning mineral elements, potassium was the most predominant element followed by sodium, magnesium, and calcium. Concerning bioactive compounds (polyphenols, flavonoids, and vitamin C), the apple vinegar produced by the artisanal method was the richest sample in terms of bioactive compounds and had the highest alpha-glucosidase and alpha-amylase inhibition. The findings of this study showed that the quality and biological activities of artisanal apple vinegar were more important than industrial apple vinegar.