Browsing by Subject "aposematism"

Sort by: Order: Results:

Now showing items 1-8 of 8
  • Kikuchi, David W.; Waldron, Samuel J.; Valkonen, Janne K.; Dobler, Susanne; Mappes, Johanna (2020)
    Mullerian mimicry is a classic example of adaptation, yet Muller's original theory does not account for the diversity often observed in mimicry rings. Here, we aimed to assess how well classical Mullerian mimicry can account for the colour polymorphism found in chemically defended Oreina leaf beetles by using field data and laboratory assays of predator behaviour. We also evaluated the hypothesis that thermoregulation can explain diversity between Oreina mimicry rings. We found that frequencies of each colour morph were positively correlated among species, a critical prediction of Mullerian mimicry. Predators learned to associate colour with chemical defences. Learned avoidance of the green morph of one species protected green morphs of another species. Avoidance of blue morphs was completely generalized to green morphs, but surprisingly, avoidance of green morphs was less generalized to blue morphs. This asymmetrical generalization should favour green morphs: indeed, green morphs persist in blue communities, whereas blue morphs are entirely excluded from green communities. We did not find a correlation between elevation and coloration, rejecting thermoregulation as an explanation for diversity between mimicry rings. Biased predation could explain within-community diversity in warning coloration, providing a solution to a long-standing puzzle. We propose testable hypotheses for why asymmetric generalization occurs, and how predators maintain the predominance of blue morphs in a community, despite asymmetric generalization.
  • Briolat, Emmanuelle S; Burdfield-Steel, Emily R; Paul, Sarah C; Rönkä, Katja Helena; Seymore, Brett M; Stankowich, Theodore; Stuckert, Adam M M (2019)
    Aposematic theory has historically predicted that predators should select for warning signals to converge on a single form, as a result of frequency-dependent learning. However, widespread variation in warning signals is observed across closely related species, populations and, most problematically for evolutionary biologists, among individuals in the same population. Recent research has yielded an increased awareness of this diversity, challenging the paradigm of signal monomorphy in aposematic animals. Here we provide a comprehensive synthesis of these disparate lines of investigation, identifying within them three broad classes of explanation for variation in aposematic warning signals: genetic mechanisms, differences among predators and predator behaviour, and alternative selection pressures upon the signal. The mechanisms producing warning coloration are also important. Detailed studies of the genetic basis of warning signals in some species, most notably Heliconius butterflies, are beginning to shed light on the genetic architecture facilitating or limiting key processes such as the evolution and maintenance of polymorphisms, hybridisation, and speciation. Work on predator behaviour is changing our perception of the predator community as a single homogenous selective agent, emphasising the dynamic nature of predator-prey interactions. Predator variability in a range of factors (e.g. perceptual abilities, tolerance to chemical defences, and individual motivation), suggests that the role of predators is more complicated than previously appreciated. With complex selection regimes at work, polytypisms and polymorphisms may even occur in Mullerian mimicry systems. Meanwhile, phenotypes are often multifunctional, and thus subject to additional biotic and abiotic selection pressures. Some of these selective pressures, primarily sexual selection and thermoregulation, have received considerable attention, while others, such as disease risk and parental effects, offer promising avenues to explore. As well as reviewing the existing evidence from both empirical studies and theoretical modelling, we highlight hypotheses that could benefit from further investigation in aposematic species. Finally by collating known instances of variation in warning signals, we provide a valuable resource for understanding the taxonomic spread of diversity in aposematic signalling and with which to direct future research. A greater appreciation of the extent of variation in aposematic species, and of the selective pressures and constraints which contribute to this once-paradoxical phenomenon, yields a new perspective for the field of aposematic signalling.
  • Winters, Anne E.; Lommi, Jenna; Kirvesoja, Jimi; Nokelainen, Ossi; Mappes, Johanna (2021)
    Aposematic organisms warn predators of their unprofitability using a combination of defenses, including visual warning signals, startling sounds, noxious odors, or aversive tastes. Using multiple lines of defense can help prey avoid predators by stimulating multiple senses and/or by acting at different stages of predation. We tested the efficacy of three lines of defense (color, smell, taste) during the predation sequence of aposematic wood tiger moths (Arctia plantaginis) using blue tit (Cyanistes caeruleus) predators. Moths with two hindwing phenotypes (genotypes: WW/Wy = white, yy = yellow) were manipulated to have defense fluid with aversive smell (methoxypyrazines), body tissues with aversive taste (pyrrolizidine alkaloids) or both. In early predation stages, moth color and smell had additive effects on bird approach latency and dropping the prey, with the strongest effect for moths of the white morph with defense fluids. Pyrrolizidine alkaloid sequestration was detrimental in early attack stages, suggesting a trade-off between pyrrolizidine alkaloid sequestration and investment in other defenses. In addition, pyrrolizidine alkaloid taste alone did not deter bird predators. Birds could only effectively discriminate toxic moths from non-toxic moths when neck fluids containing methoxypyrazines were present, at which point they abandoned attack at the consumption stage. As a result, moths of the white morph with an aversive methoxypyrazine smell and moths in the treatment with both chemical defenses had the greatest chance of survival. We suggest that methoxypyrazines act as context setting signals for warning colors and as attention alerting or "go-slow" signals for distasteful toxins, thereby mediating the relationship between warning signal and toxicity. Furthermore, we found that moths that were heterozygous for hindwing coloration had more effective defense fluids compared to other genotypes in terms of delaying approach and reducing the latency to drop the moth, suggesting a genetic link between coloration and defense that could help to explain the color polymorphism. Conclusively, these results indicate that color, smell, and taste constitute a multimodal warning signal that impedes predator attack and improves prey survival. This work highlights the importance of understanding the separate roles of color, smell and taste through the predation sequence and also within-species variation in chemical defenses.
  • Almeida, Diana Abondano; Mappes, Johanna; Gordon, Swanne (2021)
    Predator-induced plasticity in life-history and antipredator traits during the larval period has been extensively studied in organisms with complex life-histories. However, it is unclear whether different levels of predation could induce warning signals in aposematic organisms. Here, we investigated whether predator-simulated handling affects warning coloration and life-history traits in the aposematic wood tiger moth larva, Arctia plantaginis. As juveniles, a larger orange patch on an otherwise black body signifies a more efficient warning signal against predators but this comes at the costs of conspicuousness and thermoregulation. Given this, one would expect that an increase in predation risk would induce flexible expression of the orange patch. Prior research in this system points to plastic effects being important as a response to environmental changes for life history traits, but we had yet to assess whether this was the case for predation risk, a key driver of this species evolution. Using a full-sib rearing design, in which individuals were reared in the presence and absence of a non-lethal simulated bird attack, we evaluated flexible responses of warning signal size (number of orange segments), growth, molting events, and development time in wood tiger moths. All measured traits except development time showed a significant response to predation. Larvae from the predation treatment developed a more melanized warning signal (smaller orange patch), reached a smaller body size, and molted more often. Our results suggest plasticity is indeed important in aposematic organisms, but in this case may be complicated by the trade-off between costly pigmentation and other life-history traits.
  • Hämäläinen, Liisa; Mappes, Johanna; Thorogood, Rose; Valkonen, Janne K.; Karttunen, Kaijamari; Salmi, Tuuli; Rowlanda, Hannah M. (2020)
    Many prey species contain defensive chemicals that are described as tasting bitter. Bitter taste perception is, therefore, assumed to be important when predators are learning about prey defenses. However, it is not known how individuals differ in their response to bitter taste, and how this influences their foraging decisions. We conducted taste perception assays in which wild-caught great tits (Parus major) were given water with increasing concentrations of bitter-tasting chloroquine diphosphate until they showed an aversive response to bitter taste. This response threshold was found to vary considerably among individuals, ranging from chloroquine concentrations of 0.01 mmol/L to 8 mmol/L. We next investigated whether the response threshold influenced the consumption of defended prey during avoidance learning by presenting birds with novel palatable and defended prey in a random sequence until they refused to attack defended prey. We predicted that individuals with taste response thresholds at lower concentrations would consume fewer defended prey before rejecting them, but found that the response threshold had no effect on the birds' foraging choices. Instead, willingness to consume defended prey was influenced by the birds' body condition. This effect was age- and sex-dependent, with adult males attacking more of the defended prey when their body condition was poor, whereas body condition did not have an effect on the foraging choices of juveniles and females. Together, our results suggest that even though taste perception might be important for recognizing prey toxicity, other factors, such as predators' energetic state, drive the decisions to consume chemically defended prey. Lay Summary: Individual differences in predators' bitter taste perception do not influence the consumption of chemically defended prey. Many prey species have bitter-tasting defenses that generate aversive responses in predators. We show that great tits vary in their response to bitter taste, but this does not influence the number of novel defended prey they attack during avoidance learning. This suggests that other factors, such as the current physiological state, have a larger impact on predators' foraging decisions.
  • Hamalainen, Liisa; Mappes, Johanna; Rowlane, Hannah M.; Thorogood, Rose (2019)
    Aposematism is an effective antipredator strategy. However, the initial evolution and maintenance of aposematism are paradoxical because conspicuous prey are vulnerable to attack by naive predators. Consequently, the evolution of aposematic signal mimicry is also difficult to explain. The cost of conspicuousness can be reduced if predators learn about novel aposematic prey by observing another predator's response to that same prey. On the other hand, observing positive foraging events might also inform predators about the presence of undefended mimics, accelerating predation on both mimics and their defended models. It is currently unknown, however, how personal and social information combines to affect the fitness of aposematic prey. For example, does social information become more useful when predators have already ingested toxins and need to minimize further consumption? We investigated how toxin load influences great tits' (Parus major) likelihood to use social information about novel aposematic prey, and how it alters predation risk for undefended mimics. Birds were first provided with mealworms injected with bitter-tasting chloroquine (or a water-injected control), before information about a novel unpalatable prey phenotype was provided via video playback (either prey alone, or of a great tit tasting the noxious prey). An experimentally increased toxin load made great tits warier to attack prey, but only if they lacked social information about unpalatable prey. Socially educated birds consumed fewer aposematic prey relative to a cryptic phenotype, regardless of toxin load. In contrast, after personally experiencing aposematic prey, birds ignored social information about palatable mimics and were hesitant to sample them. Our results suggest that social information use by predators could be a powerful force in facilitating the evolution of aposematism as it reduces predation pressure on aposematic prey, regardless of a predator's toxin load. Nevertheless, observing foraging events of others is unlikely to alter frequency-dependent dynamics among models and mimics, although this may depend on predators having recent personal experience of the model's unpalatability. A plain language summary is available for this article.
  • Hämäläinen, Liisa; Mappes, Johanna; Rowland, Hannah M.; Teichmann, Marianne; Thorogood, Rose (2020)
    To make adaptive foraging decisions, predators need to gather information about the profitability of prey. As well as learning from prey encounters, recent studies show that predators can learn about prey defences by observing the negative foraging experiences of conspecifics. However, predator communities are complex. While observing heterospecifics may increase learning opportunities, we know little about how social information use varies across predator species. Social transmission of avoidance among predators also has potential consequences for defended prey. Conspicuous aposematic prey are assumed to be an easy target for naive predators, but this cost may be reduced if multiple predators learn by observing single predation events. Heterospecific information use by predators might further benefit aposematic prey, but this remains untested. Here we test conspecific and heterospecific information use across a predator community with wild-caught blue tits (Cyanistes caeruleus) and great tits (Parus major). We used video playback to manipulate social information about novel aposematic prey and then compared birds' foraging choices in 'a small-scale novel world' that contained novel palatable and aposematic prey items. We expected that blue tits would be less likely to use social information compared to great tits. However, we found that both blue tits and great tits consumed fewer aposematic prey after observing a negative foraging experience of a demonstrator. In fact, this effect was stronger in blue tits compared to great tits. Interestingly, blue tits also learned more efficiently from watching conspecifics, whereas great tits learned similarly regardless of the demonstrator species. Together, our results indicate that social transmission about novel aposematic prey occurs in multiple predator species and across species boundaries. This supports the idea that social interactions among predators can reduce attacks on aposematic prey and therefore influence selection for prey defences.
  • Mulà, Clelia (Helsingin yliopisto, 2021)
    Prey defend themselves from predators using a range of tactics, including evolving distasteful compounds and advertising their unprofitability with aposematic warning signals. Therefore, before attacking a potential prey, predators need to assess whether it is palatable and profitable to consume. Previous studies have demonstrated that predators can rely on personal experience (personal information) and/or observe the foraging behaviour of others (social information) to assess prey profitability. ‘Social avoidance learning’, where predators observe a negative foraging experience associated with beak wiping, has been suggested to be important to explain how novel warning signals evolve. However, in previous studies observers saw a very strong “disgust response” of the demonstrators, when in fact there is variation in how strongly birds respond to unpalatable food. Therefore, to understand how social avoidance learning can work in nature I investigated how blue tits (Cyanistes caeruleus) use social information from demonstrators that show a weaker response to unpalatable food. I provided social information to observers using video playback of a demonstrator bird consuming a novel conspicuous prey item and showing: (1) a strong disgust response (65-95 beak wipes) as in previous studies, (2) a weak disgust response (12-25 beak wipes), or (3) no disgust response (control, no beak wiping). Next, I investigated birds’ foraging choices using a miniature novel world protocol where birds encountered novel aposematic (conspicuous and unpalatable) and cryptic (camouflaged and palatable) prey. Tested individuals consumed fewer aposematic prey after seeing a strong response but seeing a weak response did not influence their foraging choices. My results, therefore, suggest that information about novel aposematic prey may be less likely to spread socially than previously thought. However, more work is needed to determine both the availability and salience of graded social information.