Browsing by Subject "aquatic plants"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Lindholm, Marja; Alahuhta, Janne; Heino, Jani; Hjort, Jan; Toivonen, Heikki (Springer Link, 2020)
    Hydrobiologia 847 (2020)
    Functional homogenisation occurs across many areas and organism groups, thereby seriously affecting biodiversity loss and ecosystem functioning. In this study, we examined how functional features of aquatic macrophytes have changed during a 70-year period at community and species levels in a boreal lake district. At the community level, we examined if aquatic macrophyte communities showed different spatial patterns in functional composition and functional richness in relation to main environmental drivers between the time periods. We also observed each species in functional space to assess if species with certain sets of traits have become more common or rare in the 70-year study period. We found changes in the relationship between functional community composition and the environment. The aquatic macrophyte communities showed different patterns in functional composition between the two time periods, and the main environmental drivers for these changes were partly different. Temporal changes in functional richness were only partially linked to concomitant changes in the environment, while stable factors were more important. Species’ functional traits were not associated with commonness or rarity patterns. Our findings revealed that functional homogenisation has not occurred across these boreal lakes, ranging from small oligotrophic forest lakes to larger lakes affected by human impacts.
  • Alahuhta, Janne; Rosbakh, Sergey; Chepinoga, Victor; Heino, Jani (Springer Link, 2020)
    Aquatic Sciences 82 2 (2020)
    We investigated whether environmental filtering or dispersal-related factors mostly drive helophyte and hydrophyte species richness and community composition in 93 lakes situated in Baikal Siberia. Using partial linear regression and partial redundancy analysis, we studied (1) what are the relative roles of environmental variables, dispersal variables, spatial processes and region identity (i.e., river basins) in explaining variation in the species richness and species composition of helophytes and hydrophytes across 93 Siberian lakes, and (2) what are the differences in the most important explanatory variables driving community variation in helophytes versus hydrophytes? We found that, for both species richness and species composition, environmental variables clearly explained most variation for both plant groups, followed by region identity and dispersal-related variables. Spatial variables were significant only for the species composition of hydrophytes. Nutrient-salinity index, a proxy for habitat trophic-salinity status, was by far the most significant environmental determinant of helophytes and hydrophytes. Our results indicate that environmental factors explained the most variation in both species richness and species composition of helophytes and hydrophytes. Nevertheless, dispersal-related variables (i.e. spatial and dispersal) were also influential but less important than environmental factors. Furthermore, the dispersal-related variables were more important for hydrophytes than for helophytes. Most brackish permanent lakes were mostly located in the steppe biomes of southern Transbaikalia. This characteristic along with the oldest age, the largest distances to both river and settlements and the lowest temperatures in the study region distinguished them from freshwater, drained and more nutrient-rich floodplain lakes.
  • Alahuhta, Janne; Lindholm, Marja; Baastrup-Spohr, Lars; García-Girón, Jorge; Toivanen, Maija; Heino, Jani; Murphy, Kevin (Elsevier, 2021)
    Aquatic Botany 168: 103325
    Broad-scale studies of species distributions and diversity have contributed to the emergence of general macroecological rules. These rules are typically founded on research using well-known terrestrial taxa as models and it is thus uncertain whether aquatic macrophytes follow these macroecological rules. Our purpose is to draw together available information from broad-scale research on aquatic macrophytes growing in lakes, ponds, wetlands, rivers and streams. We summarize how different macroecological rules fit the patterns shown by freshwater plants at various spatial scales. Finally, we outline future actions which should be taken to advance macroecological research on freshwater plants. Our review suggested that some macroecological patterns are relatively well-evidenced for aquatic macrophytes, whereas little information exists for others. We found, for example, that the species richness-latitude relationship follows a unimodal pattern, and species turnover prevails over species nestedness, whereas higher nestedness-related richness differences are found in low beta diversity regions. Contrary to terrestrial plants, climate or history seem not to be dominant determinants explaining these broad-scale patterns; instead local explanatory variables (e.g., water quality, such as alkalinity and nutrients, and hydromorphology) are often important for freshwater plants. We identified several knowledge gaps related, for example, to a smaller number of studies in lotic habitats, compared with lentic habitats, lack of spatially-adequate aquatic plant studies, deficiency of comprehensive species traits databases for aquatic macrophytes, and absence of a true phylogeny comprising most freshwater plant lineages. We hope this review will encourage the undertaking of additional macroecological investigations on freshwater plants across broad spatial and temporal scales.
  • Lindholm, Marja; Alahuhta, Janne; Heino, Jani; Toivonen, Heikki (Wiley Online Library, 2020)
    Ecography 43 2 (2020)
    It has been predicted that spatial beta diversity shows a decreasing trend in the Anthropocene due to increasing human impact, causing biotic homogenisation. We aimed to discover if vascular aquatic macrophyte communities show different spatial patterns in beta diversity in relation to land use and environmental characteristics in different decades from 1940s to 2010s. We aimed to discover if spatial structures differ between species-, phylogeny- and functional-based beta diversity. We used presence–absence data of aquatic macrophytes from five decades from small boreal lakes. We utilized generalised dissimilarity modelling to analyse spatial patterns in beta diversity in relation to environmental gradients. We found that lake elevation and pH were the most important variables in each decade, while land use was not particularly important in shaping beta diversity patterns. We did not find signs of a decreasing trend in spatial beta diversity in our study area during the past 70 yr. We did not find signs of either biotic homogenisation or biotic differentiation (taxonomic, phylogenetic or functional). Vascular aquatic macrophyte communities showed only slightly different beta diversity patterns in relation to human impact across decades. The patterns of different facets of beta diversity diverged only slightly from each other. Lake position in the landscape, reflecting both natural connectivity and lake characteristics, explained the patterns found in beta diversity, probably because our study area has faced only modest changes in land use from 1940s to 2010s when compared globally. Our study highlights the fact that biotic homogenisation is not an unambiguous process acting similarly at all spatial and temporal scales or in different environments and different organism groups.