Browsing by Subject "asymmetric volatility"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Antell, Jan (Svenska handelshögskolan, 2004)
    Economics and Society
    During the last few decades there have been far going financial market deregulation, technical development, advances in information technology, and standardization of legislation between countries. As a result, one can expect that financial markets have grown more interlinked. The proper understanding of the cross-market linkages has implications for investment and risk management, diversification, asset pricing, and regulation. The purpose of this research is to assess the degree of price, return, and volatility linkages between both geographic markets and asset categories within one country, Finland. Another purpose is to analyze risk asymmetries, i.e., the tendency of equity risk to be higher after negative events than after positive events of equal magnitude. The analysis is conducted both with respect to total risk (volatility), and systematic risk (beta). The thesis consists of an introductory part and four essays. The first essay studies to which extent international stock prices comove. The degree of comovements is low, indicating benefits from international diversification. The second essay examines the degree to which the Finnish market is linked to the “world market”. The total risk is divided into two parts, one relating to world factors, and one relating to domestic factors. The impact of world factors has increased over time. After 1993, when foreign investors were allowed to freely invest in Finnish assets, the risk level has been higher than previously. This was also the case during the economic recession in the beginning of the 1990’s. The third essay focuses on the stock, bond, and money markets in Finland. According to a trading model, the degree of volatility linkages should be strong. However, the results contradict this. The linkages are surprisingly weak, even negative. The stock market is the most independent, while the money market is affected by events on the two other markets. The fourth essay concentrates on volatility and beta asymmetries. Contrary to many international studies there are only few cases of risk asymmetries. When they occur, they tend to be driven by the market-wide component rather than the portfolio specific element.
  • Badshah, Ihsan Ullah (Svenska handelshögskolan, 2010)
    Economics and Society
    Modeling and forecasting of implied volatility (IV) is important to both practitioners and academics, especially in trading, pricing, hedging, and risk management activities, all of which require an accurate volatility. However, it has become challenging since the 1987 stock market crash, as implied volatilities (IVs) recovered from stock index options present two patterns: volatility smirk(skew) and volatility term-structure, if the two are examined at the same time, presents a rich implied volatility surface (IVS). This implies that the assumptions behind the Black-Scholes (1973) model do not hold empirically, as asset prices are mostly influenced by many underlying risk factors. This thesis, consists of four essays, is modeling and forecasting implied volatility in the presence of options markets’ empirical regularities. The first essay is modeling the dynamics IVS, it extends the Dumas, Fleming and Whaley (DFW) (1998) framework; for instance, using moneyness in the implied forward price and OTM put-call options on the FTSE100 index, a nonlinear optimization is used to estimate different models and thereby produce rich, smooth IVSs. Here, the constant-volatility model fails to explain the variations in the rich IVS. Next, it is found that three factors can explain about 69-88% of the variance in the IVS. Of this, on average, 56% is explained by the level factor, 15% by the term-structure factor, and the additional 7% by the jump-fear factor. The second essay proposes a quantile regression model for modeling contemporaneous asymmetric return-volatility relationship, which is the generalization of Hibbert et al. (2008) model. The results show strong negative asymmetric return-volatility relationship at various quantiles of IV distributions, it is monotonically increasing when moving from the median quantile to the uppermost quantile (i.e., 95%); therefore, OLS underestimates this relationship at upper quantiles. Additionally, the asymmetric relationship is more pronounced with the smirk (skew) adjusted volatility index measure in comparison to the old volatility index measure. Nonetheless, the volatility indices are ranked in terms of asymmetric volatility as follows: VIX, VSTOXX, VDAX, and VXN. The third essay examines the information content of the new-VDAX volatility index to forecast daily Value-at-Risk (VaR) estimates and compares its VaR forecasts with the forecasts of the Filtered Historical Simulation and RiskMetrics. All daily VaR models are then backtested from 1992-2009 using unconditional, independence, conditional coverage, and quadratic-score tests. It is found that the VDAX subsumes almost all information required for the volatility of daily VaR forecasts for a portfolio of the DAX30 index; implied-VaR models outperform all other VaR models. The fourth essay models the risk factors driving the swaption IVs. It is found that three factors can explain 94-97% of the variation in each of the EUR, USD, and GBP swaption IVs. There are significant linkages across factors, and bi-directional causality is at work between the factors implied by EUR and USD swaption IVs. Furthermore, the factors implied by EUR and USD IVs respond to each others’ shocks; however, surprisingly, GBP does not affect them. Second, the string market model calibration results show it can efficiently reproduce (or forecast) the volatility surface for each of the swaptions markets.
  • Kulp-Tåg, Sofie (Svenska handelshögskolan, 2008)
    Economics and Society
    Financial time series tend to behave in a manner that is not directly drawn from a normal distribution. Asymmetries and nonlinearities are usually seen and these characteristics need to be taken into account. To make forecasts and predictions of future return and risk is rather complicated. The existing models for predicting risk are of help to a certain degree, but the complexity in financial time series data makes it difficult. The introduction of nonlinearities and asymmetries for the purpose of better models and forecasts regarding both mean and variance is supported by the essays in this dissertation. Linear and nonlinear models are consequently introduced in this dissertation. The advantages of nonlinear models are that they can take into account asymmetries. Asymmetric patterns usually mean that large negative returns appear more often than positive returns of the same magnitude. This goes hand in hand with the fact that negative returns are associated with higher risk than in the case where positive returns of the same magnitude are observed. The reason why these models are of high importance lies in the ability to make the best possible estimations and predictions of future returns and for predicting risk.
  • Antell, Jan (Svenska handelshögskolan, 2000)
    Working Papers
    This paper investigates to what extent the volatility of Finnish stock portfolios is transmitted through the "world volatility". We operationalize the volatility processes of Finnish leverage, industry, and size portfolio returns by asymmetric GARCH specifications according to Glosten et al. (1993). We use daily return data for January, 2, 1987 to December 30, 1998. We find that the world shock significantly enters the domestic models, and that the impact has increased over time. This applies also for the variance ratios, and the correlations to the world. The larger the firm, the larger is the world impact. The conditional variance is higher during recessions. The asymmetry parameter is surprisingly non-significant, and the leverage hypothesis cannot be verified. The return generating process of the domestic portfolio returns does usually not include the world information set, thus indicating that the returns are generated by a segmented conditional asset pricing model.