Browsing by Subject "autophagy"

Sort by: Order: Results:

Now showing items 1-20 of 20
  • Lai, Jeffrey K. F.; Sam, I-Ching; Verlhac, Pauline; Baguet, Joel; Eskelinen, Eeva-Liisa; Faure, Mathias; Chan, Yoke Fun (2017)
    Viruses have evolved unique strategies to evade or subvert autophagy machinery. Enterovirus A71 (EV-A71) induces autophagy during infection in vitro and in vivo. In this study, we report that EV-A71 triggers autolysosome formation during infection in human rhabdomyosarcoma (RD) cells to facilitate its replication. Blocking autophagosome-lysosome fusion with chloroquine inhibited virus RNA replication, resulting in lower viral titres, viral RNA copies and viral proteins. Overexpression of the non-structural protein 2BC of EV-A71 induced autolysosome formation. Yeast 2-hybrid and co-affinity purification assays showed that 2BC physically and specifically interacted with a N-ethylmaleimide-sensitive factor attachment receptor (SNARE) protein, syntaxin-17 (STX17). Co-immunoprecipitation assay further showed that 2BC binds to SNARE proteins, STX17 and synaptosome associated protein 29 (SNAP29). Transient knockdown of STX17, SNAP29, and microtubule-associated protein 1 light chain 3B (LC3B), crucial proteins in the fusion between autophagosomes and lysosomes) as well as the lysosomal-associated membrane protein 1 (LAMP1) impaired production of infectious EV-A71 in RD cells. Collectively, these results demonstrate that the generation of autolysosomes triggered by the 2BC non-structural protein is important for EV-A71 replication, revealing a potential molecular pathway targeted by the virus to exploit autophagy. This study opens the possibility for the development of novel antivirals that specifically target 2BC to inhibit formation of autolysosomes during EV-A71 infection.
  • Hentila, Jaakko; Nissinen, Tuuli A.; Korkmaz, Ayhan; Lensu, Sanna; Silvennoinen, Mika; Pasternack, Arja; Ritvos, Olli; Atalay, Mustafa; Hulmi, Juha J. (2019)
    Muscle wasting in cancer cachexia can be alleviated by blocking activin receptor type 2 (ACVR2) ligands through changes in protein synthesis/degradation. These changes in cellular and protein metabolism may alter protein homeostasis. First, we elucidated the acute (1-2 days) and 2-week effects of blocking ACVR2 ligands by soluble activin receptor 2B (sACVR2B-Fc) on unfolded protein response (UPR), heat shock proteins (HSPs) and redox balance in a healthy mouse skeletal muscle. Second, we examined UPR, autophagy and redox balance with or without sACVR2B-Fc administration in muscle and liver of C26 tumor-bearing mice. The indicators of UPR and HSPs were not altered 1-2 days after a single sACVR2B-Fc administration in healthy muscles, but protein carbonyls increased (p <0.05). Two weeks of sACVR2B-Fc administration increased muscle size, which was accompanied by increased UPR markers: GRP78 <0.05), phosphorylated elF2 alpha <0.01) and HSP47 (p <0.01). Additionally, protein carbonyls and reduced form of glutathione increased (GSH) (p <0.05). On the other hand, C26 cancer cachexia manifested decreased UPR markers (p-elF2 alpha, HSP47, p-JNK; p <0.05) and antioxidant GSH (p <0.001) in muscle, whereas the ratio of oxidized to reduced glutathione increased (GSSG/GSH; p <0.001). Administration of sACVR2B-Fc prevented the decline in GSH and increased some of the UPR indicators in tumor-bearing mice. Additionally, autophagy markers LC3II/I (p <0.05), Beclin-1 (p <0.01), and P62 (p <0.05) increased in the skeletal muscle of tumor-bearing mice. Finally, indicators of UPR, PERK, p-elF2 alpha and GRP78, increased (p <0.05), whereas ATF4 was strongly decreased (p <0.01) in the liver of tumor-bearing mice while sACVR2B-Fc had no effect. Muscle GSH and many of the altered UPR indicators correlated with tumor mass, fat mass and body mass loss. In conclusion, experimental cancer cachexia is accompanied by distinct and tissue-specific changes in proteostasis. Muscle hypertrophy induced by blocking ACVR2B ligands may be accompanied by the induction of UPR and increased protein carbonyls but blocking ACVR2B ligands may upregulate antioxidant protection.
  • Colecchia, D; Stasi, M; Leonardi, M; Manganelli, F; Nolano, M; Veneziani, BM; Santoro, L; Eskelinen, Eeva-Liisa; Chiariello, M; Bucci, Cecilia (2018)
    Charcot-Marie-Tooth type 2B (CMT2B) disease is a dominant axonal peripheral neuropathy caused by 5 mutations in the RAB7A gene, a ubiquitously expressed GTPase controlling late endocytic trafficking. In neurons, RAB7A also controls neuronal-specific processes such as NTF (neurotrophin) trafficking and signaling, neurite outgrowth and neuronal migration. Given the involvement of macroautophagy/autophagy in several neurodegenerative diseases and considering that RAB7A is fundamental for autophagosome maturation, we investigated whether CMT2B-causing mutants affect the ability of this gene to regulate autophagy. In HeLa cells, we observed a reduced localization of all CMT2B-causing RAB7A mutants on autophagic compartments. Furthermore, compared to expression of RAB7AWT, expression of these mutants caused a reduced autophagic flux, similar to what happens in cells expressing the dominant negative RAB7AT22N mutant. Consistently, both basal and starvation-induced autophagy were strongly inhibited in skin fibroblasts from a CMT2B patient carrying the RAB7AV162M mutation, suggesting that alteration of the autophagic flux could be responsible for neurodegeneration.
  • Butkovic, Rebeka (Helsingin yliopisto, 2020)
    Autophagy is a cellular recycling and quality control process that eliminates cellular material in a non-selective or selective fashion. Macroautophagy is non-selective, and degrades macromolecules or damaged organelles to sustain cellular homeostasis. The selective autophagy of dysfunctional or excess mitochondria is known as mitophagy. The clinical importance of functional degradation is exemplified by the lysosomal storage disorders (LSDs), where lysosomal hydrolytic enzymes are absent or dysfunctional. Previous investigations of a rare infantile LSD indicated a change in autophagy and decreased mitochondrial content. The aim of this MSc thesis was to quantitatively compare macroautophagy and mitophagy in a cellular model of this rare LSD, by generating fluorescent macroautophagy and mitophagy reporter-expressing cell lines from patient material. Fibroblasts derived from patients diagnosed with a rare infantile LSD were transduced with lentiviruses carrying either mCherry-GFP-LC3 or mito-QC reporters, for the microscopic analysis of autophagy and mitophagy, respectively. I also monitored autophagic flux by traditional biochemistry in untreated and starved cells, in the presence or absence of lysosomal inhibitors (bafilomycin A1). Basal and iron-depletion induced mitophagy was profiled using confocal microscopy, quantitative cell biology and biochemistry. My findings suggest differential autophagic turnover in LSD patient-derived fibroblasts, with a marked accumulation of non-acidified autophagic structures. Basal mitophagy was elevated in two out of three LSD patient cell lines compared to unaffected controls. LSD patient cells exhibited altered mitochondrial content and network architecture compared to controls. These phenotypes were accompanied by distinct changes in the endo-lysosomal system and increased cell size. The patient-derived cells exhibit a profound accumulation of lysosomes and autophagic structures. My findings are in accordance with previous research in the field, suggesting perturbed macroautophagy in this rare LSD. The observations of altered mitochondrial homeostasis in this LSD provide a basis for future investigation. The reporter-expressing cells, generated as part of this MSc thesis project, will enable future studies of mechanisms that underlie phenotypic changes, and will complement essential in vivo work in this area.
  • Eskelinen, Eeva-Liisa (2019)
    Autophagy is a conserved catabolic process that delivers cytoplasmic components and organelles to lysosomes for degradation and recycling. This pathway serves to degrade nonfunctional organelles and aggregate-prone proteins, as well as to produce substrates for energy production and biosynthesis. Autophagy is especially important for the maintenance of stem cells, and for the survival and homeostasis of post-mitotic cells like neurons. Functional autophagy promotes longevity in several model organisms. Autophagy regulates immunity and inflammation at several levels and has both anti- and pro-tumorigenic roles in cancer. This review provides a concise overview of autophagy and its importance in cellular and organismal homeostasis, with emphasis on aging, stem cells, neuronal cells, immunity, inflammation, and cancer.
  • Paterno, Jussi J.; Koskela, Ali; Hyttinen, Juha M. T.; Vattulainen, Elina; Synowiec, Ewelina; Tuuminen, Raimo; Watala, Cezary; Blasiak, Janusz; Kaarniranta, Kai (2020)
    Age-related macular degeneration is an eye disease that is the main cause of legal blindness in the elderly in developed countries. Despite this, its pathogenesis is not completely known, and many genetic, epigenetic, environmental and lifestyle factors may be involved. Vision loss in age-related macular degeneration (AMD) is usually consequence of the occurrence of its wet (neovascular) form that is targeted in the clinic by anti-VEGF (vascular endothelial growth factor) treatment. The wet form of AMD is associated with the accumulation of cellular waste in the retinal pigment epithelium, which is removed by autophagy and the proteosomal degradation system. In the present work, we searched for the association between genotypes and alleles of single nucleotide polymorphisms (SNPs) of autophagy-related genes and wet AMD occurrence in a cohort of Finnish patients undergoing anti-VEGF therapy and controls. Additionally, the correlation between treatment efficacy and genotypes was investigated. Overall, 225 wet AMD patients and 161 controls were enrolled in this study. Ten SNPs (rs2295080, rs11121704, rs1057079, rs1064261, rs573775, rs11246867, rs3088051, rs10902469, rs73105013, rs10277) in the mTOR (Mechanistic Target of Rapamycin), ATG5 (Autophagy Related 5), ULK1 (Unc-51-Like Autophagy Activating Kinase 1), MAP1LC3A (Microtubule Associated Protein 1 Light Chain 3 alpha), SQSTM1 (Sequestosome 1) were analyzed with RT-PCR-based genotyping. The genotype/alleles rs2295080-G, rs11121704-C, rs1057079-C and rs73105013-T associated with an increased, whereas rs2295080-TT, rs2295080-T, rs11121704-TT, rs1057079-TT, rs1057079-T, rs573775-AA and rs73105013-C with a decreased occurrence of wet AMD. In addition, the rs2295080-GG, rs2295080-GT, rs1057079-TT, rs11246867-AG, rs3088051-CC and rs10277-CC genotypes were a positively correlated cumulative number of anti-VEGF injections in 2 years. Therefore, variability in autophagy genes may have an impact on the risk of wet AMD occurrence and the efficacy of anti-VEGF treatment.
  • Kissing, Sandra; Rudnik, Soenke; Damme, Markus; Luellmann-Rauch, Renate; Ichihara, Atsuhiro; Kornak, Uwe; Eskelinen, Eeva-Liisa; Jabs, Sabrina; Heeren, Joerg; De Brabander, Jef K.; Haas, Albert; Saftig, Paul (2017)
    The vacuolar-type H+-translocating ATPase (v-H+-ATPase) has been implicated in the amino aciddependent activation of the mechanistic target of rapamycin complex 1 (MTORC1), an important regulator of macroautophagy. To reveal the mechanistic links between the v-H+-ATPase and MTORC1, we destablilized v-H+-ATPase complexes in mouse liver cells by induced deletion of the essential chaperone ATP6AP2. ATP6AP2-mutants are characterized by massive accumulation of endocytic and autophagic vacuoles in hepatocytes. This cellular phenotype was not caused by a block in endocytic maturation or an impaired acidification. However, the degradation of LC3-II in the knockout hepatocytes appeared to be reduced. When v-H+-ATPase levels were decreased, we observed lysosome association of MTOR and normal signaling of MTORC1 despite an increase in autophagic marker proteins. To better understand why MTORC1 can be active when v-H+-ATPase is depleted, the activation of MTORC1 was analyzed in ATP6AP2-deficient fibroblasts. In these cells, very little amino acid-elicited activation of MTORC1 was observed. In contrast, insulin did induce MTORC1 activation, which still required intracellular amino acid stores. These results suggest that in vivo the regulation of macroautophagy depends not only on v-H+-ATPase-mediated regulation of MTORC1.
  • Srinivasan, Vignesh; Bruelle, Celine; Scifo, Enzo; Pham, Dan Duc; Soliymani, Rabah; Lalowski, Maciej; Lindholm, Dan Bj (2020)
    USP14 is a deubiquitinating enzyme associated with the proteasome that is important for protein degradation. Here we show that upon proteasomal inhibition or expression of the mutant W58A38 USP14, association of USP14 with the 19S regulatory particle is disrupted. MS-based interactomics revealed an interaction of USP14 with the chaperone, HSC70 in neuroblastoma cells. Proteasome inhibition enhanced binding of USP14 to HSC70, but also to XBP1u and IRE1α proteins, demonstrating a role in the unfolded protein response. Striatal neurons expressing mutant huntingtin exhibited reduced USP14 and HSC70 levels, whilst inhibition of HSC70 downregulated USP14. Furthermore, proteasome inhibition or the use of mutant W58A-USP14 facilitated the interaction of USP14 with the autophagy protein, GABARAP. Functionally, overexpression of W58A-USP14 increased GABARAP positive autophagosomes in striatal neurons and this was abrogated using the HSC70 inhibitor, VER-155008. Modulation of the USP14-HSC70 axis by various drugs may represent a potential therapeutic target in HD to beneficially influence multiple proteostasis pathways
  • Huovila, Tiina (Helsingfors universitet, 2017)
    Autophagy is a pathway for cells to degrade intracellular components that are no longer needed or are detrimental for the cells. It is essential for cell homeostasis and survival and has been related to various diseases and pathophysiology. Autophagy is a complex process and there are still several unclear und unknown aspects to it. Regulation of autophagy is essential to prevent unwanted and escess activation, and several pathways and molecules, both stimulatory and inhibitory, are included. Different signaling pathways are sensitive to a variety of environmental clues. Two main autophagy pathways are mTOR-dependent pathway and mTOR-independent pathway. Induction of autophagy in the latter pathway is dependent on the interaction of Bcl-2 and Beclin 1. Prolyl oligopeptidase (PREP) is a peptidase enzyme that has several substrates. PREP-inhibition by KYP-2047 can reduce aggregation of α-synuclein in two ways: by increasing rate of autophagy and by decreasing dimerization. The aim of this study was to find out how PREP affects the interaction between Bcl-2 and Beclin 1 and how this affects autophagy. Based on previous studies, PREP-inhibition seems to increase the amount of Beclin 1 and to affect the phosphorylation of Bcl-2 and Beclin 1, leading to dissociation of the complex. Hypothesis was to see differences in colocalization of Bcl-2 and Beclin 1 in cells treated with different PREP-modifications and for PREP-inhibition to decrease the colocalization. Human embryonic kidney cells 293 (HEK-293) and hPREP knockout cell line created from them by using CRISPR/Cas9-silencing were used in the experiments. Two experiments were performed on regular HEK-cells: inhibitor experiment with KYP-2047 (1 or 10 µM) and overexpression experiment (transfection with either active or inactive hPREP plasmid). After immunofluorescence staining, cells were analysed with confocal microscope and colocation analysis of Bcl-2 and Beclin 1 was performed. The intensity of Beclin 1 in the nuclei was stronger than in other parts of the cell in all samples, which could indicate a stronger activity of its nuclear tasks compared to autophagy. However, the antibody used for immunofluorescence has most likely caused this staining pattern. Based on previous knowledge, it was expected to see differences in colocalization of Bcl-2 and Beclin 1 in cells treated with different PREP-modifications. However, there were no significant differences in colocalization of Beclin 1 and Bcl-2 in any of the experiments but it was nearly 100 percent in all treatments. Since rate of autophagy in cells was not detected, it is impossible to determine, if there were changes in autophagy that were not reflected as changes in colocalization of these two proteins. It is possible that even a small change in colocalization can affect the rate of autophagy or there might be subpopulations where the interaction is interrupted and these changes are so small that they are not detectable with the methods used in this experiment. Both Bcl-2 and Beclin 1 also have functions not related to autophagy, which could be one reason behind the results gained in this study.
  • Anwar, Tahira; Liu, Xiaonan; Suntio, Taina; Marjamäki, Annika; Biazik, Joanna; Chan, Edmond Y. W.; Varjosalo, Markku; Eskelinen, Eeva-Liisa (2019)
    Autophagy transports cytoplasmic material and organelles to lysosomes for degradation and recycling. Beclin 1 forms a complex with several other autophagy proteins and functions in the initiation phase of autophagy, but the exact role of Beclin 1 subcellular localization in autophagy initiation is still unclear. In order to elucidate the role of Beclin 1 localization in autophagosome biogenesis, we generated constructs that target Beclin 1 to the endoplasmic reticulum (ER) or mitochondria. Our results confirmed the proper organelle-specific targeting of the engineered Beclin 1 constructs, and the proper formation of autophagy-regulatory Beclin 1 complexes. The ULK kinases are required for autophagy initiation upstream of Beclin 1, and autophagosome biogenesis is severely impaired in ULK1/ULK2 double knockout cells. We tested whether Beclin 1 targeting facilitated its ability to rescue autophagosome formation in ULK1/ULK2 double knockout cells. ER-targeted Beclin 1 was most effective in the rescue experiments, while mitochondria-targeted and non-targeted Beclin 1 also showed an ability to rescue, but with lower activity. However, none of the constructs was able to increase autophagic flux in the knockout cells. We also showed that wild type Beclin 1 was enriched on the ER during autophagy induction, and that ULK1/ULK2 facilitated the ER-enrichment of Beclin 1 under basal conditions. The results suggest that one of the functions of ULK kinases may be to enhance Beclin 1 recruitment to the ER to drive autophagosome formation.
  • Escamez, Sacha; Stael, Simon; Vainonen, Julia; Willems, Patrick; Jin, Huiting; Kimura, Sachie; Van Breusegem, Frank; Gevaert, Kris; Wrzaczek, Michael Alois; Tuominen, Hannele (2019)
    During plant vascular development, xylem tracheary elements (TEs) form water-conducting, empty pipes by genetically regulated cell death. Cell death is prevented from spreading to non-TEs by unidentified intercellular mechanisms, downstream of METACASPASE9 (MC9)-mediated regulation of autophagy in TEs. Here, we identified differentially abundant extracellular peptides in vascular-differentiating wild-type and MC9-down-regulated Arabidopsis cell suspensions. A peptide named Kratos rescued the abnormally high ectopic non-TE death resulting from either MC9 knockout or TE-specific overexpression of the ATG5 autophagy protein during experimentally induced vascular differentiation in Arabidopsis cotyledons. Kratos also reduced cell death following mechanical damage and extracellular ROS production in Arabidopsis leaves. Stress-induced but not vascular non-TE cell death was enhanced by another identified peptide, named Bia. Bia is therefore reminiscent of several known plant cell death-inducing peptides acting as damage-associated molecular patterns. In contrast, Kratos plays a novel extracellular cell survival role in the context of development and during stress response.
  • Dogan, Sukru Anil; Cerutti, Raffaele; Benincá, Cristiane; Brea-Calvo, Gloria; Jacobs, Howard Trevor; Zeviani, Massimo; Szibor, Marten; Viscomi, Carlo (2018)
    Summary Alternative oxidases (AOXs) bypass respiratory complexes III and IV by transferring electrons from coenzyme Q directly to O2. They have therefore been proposed as a potential therapeutic tool for mitochondrial diseases. We crossed the severely myopathic skeletal muscle-specific COX15 knockout (KO) mouse with an AOX-transgenic mouse. Surprisingly, the double KO-AOX mutants had decreased lifespan and a substantial worsening of the myopathy compared with KO alone. Decreased ROS production in KO-AOX versus KO mice led to impaired AMPK/PGC-1α signaling and PAX7/MYOD-dependent muscle regeneration, blunting compensatory responses. Importantly, the antioxidant N-acetylcysteine had a similar effect, decreasing the lifespan of KO mice. Our findings have major implications for understanding pathogenic mechanisms in mitochondrial diseases and for the design of therapies, highlighting the benefits of ROS signaling and the potential hazards of antioxidant treatment.
  • Ylä-Anttila, Päivi; Eskelinen, Eeva-Liisa (2018)
    Autophagy is an evolutionarily conserved degradation pathway for cells to maintain homeostasis, produce energy, degrade misfolded proteins and damaged organelles, and fight against intracellular pathogens. The process of autophagy entails the isolation of cytoplasmic cargo into double membrane bound autophagosomes that undergo maturation by fusion with endosomes and lysosomes in order to obtain degradation capacity. RAB proteins regulate intracellular vesicle trafficking events including autophagy. RAB24 is an atypical RAB protein that is required for the clearance of late autophagic vacuoles under basal conditions. RAB24 has also been connected to several diseases including ataxia, cancer and tuberculosis. This review gives a short summary on autophagy and RAB proteins, and an overview on the current knowledge on the roles of RAB24 in autophagy and disease.
  • Zachari, Maria; Gudmundsson, Sigurdur R.; Li, Ziyue; Manifava, Maria; Shah, Ronak; Smith, Matthew; Stronge, James; Karanasios, Eleftherios; Piunti, Caterina; Kishi-Itakura, Chieko; Vihinen, Helena; Jokitalo, Eija; Guan, Jun-Lin; Buss, Folma; Smith, Andrew M.; Walker, Simon A.; Eskelinen, Eeva-Liisa; Ktistakis, Nicholas T. (2019)
    The dynamics and co-ordination between autophagy machinery and selective receptors during mitophagy are unknown. Also unknown is whether mitophagy depends on pre-existing membranes, or is triggered on the surface of damaged mitochondria. Using a ubiquitin-dependent mitophagy inducer, the lactone ivermectin, we have combined genetic and imaging experiments to address these questions. Ubiquitination of mitochondrial fragments is required earliest followed by autophosphorylation of TBK1. Next, early essential autophagy proteins FIP200 and ATG13 act at different steps whereas ULK1/2 are dispensable. Receptors act temporally and mechanistically upstream of ATG13 but downstream of FIP200. The VPS34 complex functions at the omegasome step. ATG13 and optineurin target mitochondria in a discontinuous oscillatory way suggesting multiple initiation events. Targeted ubiquitinated mitochondrial are cradled by endoplasmic reticulum strands even without functional autophagy machinery and mitophagy adaptors. We propose that damaged mitochondria are ubiquitinated and dynamically encased in ER strands providing platforms for formation of the mitophagosomes.
  • Dillemuth, Pyry (Helsingin yliopisto, 2021)
    Prolyl oligopeptidase (PREP) is a serine protease that is widely found throughout the human body and especially in the brain. The primary function of PREP is thought to be the hydrolysis of the carboxyl side bond of proline residues in oligopeptides. PREP is also shown to increase the dimerization and aggregation of α-synuclein and downregulate the protein phosphatase 2A mediated autophagy in the cell via direct protein-protein interactions (PPI). The accumulation of α-synuclein aggregates in cell is known to cause α-synucleinopathies such as Parkinson’s disease. This makes the PPIs of PREP an attractive target for drug research. The mechanisms of the PPIs of PREP are still poorly understood. Recent studies have shown that these PPIs can be modulated with ligands lacking high inhibitory activity for the proteolytic activity. These studies show that the IC50-value of the ligand does not correlate with ligands ability to affect the PPIs of PREP. Ligands that could selectively modulate the PPIs of PREP without inhibiting the proteolytic activity of PREP could give valuable information on the mechanisms of the PPIs and on how to modulate them. It is hypothesized that the ligands could bind to PREP at a site that does not interfere with its proteolytic activity, and ligand binding is assumed to restrict the dynamic structure of PREP and thereby also modulating the PPIs of PREP. The aim of this study was to synthetize novel peptidic PREP ligands and study their effects on the proteolytic activity of PREP and the PPIs of PREP. The aim was to find and identify ligands and structures that would modulate the PPIs of PREP and observe how the IC50-values of the ligands would correlate. L-Alanyl-pyrrolidine was selected as the scaffold for the compound series and the five-membered heteroaromatics, imidazole, triazole and tetrazole, were added to the 2-position of the pyrrolidine ring. In this position there is an electrophilic group in many PREP inhibitors, although these heteroaromatics are not electrophiles. The scaffold was also expanded by adding phenyalkyl groups with different linker lengths were added to the N-terminal side of the alanine. The ligands were synthesized using four synthesis routes which were based on synthesis methods found in literature. The IC50-values and the effects on α-synuclein dimerization and autophagic flux were determined for five synthetized compounds. The tested compounds were all weak PREP inhibitors and showed no strong activity in the α-synuclein dimerization and autophagy assays. Despite the weak activities in the assays, the importance of the linker length in the phenyalkyl group was shown. Changing the linker by one methylene group had noticeable effect on the overall activity. The results also demonstrate a lack of correlation between the IC50-values and the effects on α-synuclein dimerization and autophagic flux, which further confirms the lack of correlation between the proteolytic function and the PPIs of PREP which was observed also in previous studies.
  • Merezhko, Maria; Uronen, Riikka-Liisa; Huttunen, Henri J. (2020)
    The progressive accumulation and spread of misfolded tau protein in the nervous system is the hallmark of tauopathies, progressive neurodegenerative diseases with only symptomatic treatments available. A growing body of evidence suggests that spreading of tau pathology can occurviacell-to-cell transfer involving secretion and internalization of pathological forms of tau protein followed by templated misfolding of normal tau in recipient cells. Several studies have addressed the cell biological mechanisms of tau secretion. It now appears that instead of a single mechanism, cells can secrete tauviathree coexisting pathways: (1) translocation through the plasma membrane; (2) membranous organelles-based secretion; and (3) ectosomal shedding. The relative importance of these pathways in the secretion of normal and pathological tau is still elusive, though. Moreover, glial cells contribute to tau propagation, and the involvement of different cell types, as well as different secretion pathways, complicates the understanding of prion-like propagation of tauopathy. One of the important regulators of tau secretion in neuronal activity, but its mechanistic connection to tau secretion remains unclear and may involve all three secretion pathways of tau. This review article summarizes recent advancements in the field of tau secretion with an emphasis on cell biological aspects of the secretion process and discusses the role of neuronal activity and glial cells in the spread of pathological forms of tau.
  • Srinivasan, Vignesh; Korhonen, Laura; Lindholm, Dan (2020)
    Neurons are polarized in structure with a cytoplasmic compartment extending into dendrites and a long axon that terminates at the synapse. The high level of compartmentalization imposes specific challenges for protein quality control in neurons making them vulnerable to disturbances that may lead to neurological dysfunctions including neuropsychiatric diseases. Synapse and dendrites undergo structural modulations regulated by neuronal activity involve key proteins requiring strict control of their turnover rates and degradation pathways. Recent advances in the study of the unfolded protein response (UPR) and autophagy processes have brought novel insights into the specific roles of these processes in neuronal physiology and synaptic signaling. In this review, we highlight recent data and concepts about UPR and autophagy in neuropsychiatric disorders and synaptic plasticity including a brief outline of possible therapeutic approaches to influence UPR and autophagy signaling in these diseases.
  • Biazik, Joanna; Vihinen, Helena; Anwar, Tahira; Jokitalo, Eija; Eskelinen, Eeva-Liisa (2015)
    Both light microscopy (LM) and electron microscopy (EM) are able to reveal important information about the formation and function of various autophagic compartments. In this article we will outline the various techniques that are emerging in EM, focusing on analyzing three-dimensional morphology, collectively known as volume electron microscopy (volume EM), as well as on methods that can be used to localize proteins and antigenic epitopes. Large cell volumes can now be visualized at the EM level by using one of the two complementary imaging techniques, namely Serial Block-face Scanning Electron Microscopy (SB-SEM) or Focused Ion Beam Scanning Electron Microscopy (FIB-SEM). These two blockface imaging methods reveal ultrastructural information from all membrane-bound organelles such as autophagic compartments to be visualized in a three-dimensional space, in association with their surrounding organelles. Another method which falls into the volume EM category is dual-axis electron tomography (ET). This method is more suited to reconstructing smaller volumes from areas of interest that require nano-structural detail to be confirmed such as membrane contact sites (MCSs) between autophagic compartments and various organelles. Further to this, to complement the morphological identification of autophagic compartments, immunolabeling can be carried out at the EM level to confirm the nature of various autophagic compartments depending on the localization of various antigens at a sub-cellular level. To determine this, various immunolabeling techniques can be carried out, namely the pre-embedding or the post-embedding immunolabeling methods. Examples of both of these methods will be described in this chapter. Correlative light-electron microscopy (CLEM) can be used to visualize the same autophagic organelles under the LM, followed by high-resolution imaging under the EM. Finally, cryofixation has revolutionized the EM field by allowing rapid immobilization of cells and tissue in the near native state, so samples are no longer prone to artefacts induced by chemical fixation. Collectively, this chapter will discuss the aforementioned capabilities of the EM in more detail, with a particular focus on autophagy, namely the impact of EM in the study of the morphology and biogenesis of the phagophore/isolation membrane (referred to as the phagophore hereafter).
  • Jha, Sweta; Holmberg, Carina I. (2020)
    The ubiquitin–proteasome system (UPS) and the autophagy–lysosomal pathway (ALP) are the two main eukaryotic intracellular proteolytic systems involved in maintaining proteostasis. Several studies have reported on the interplay between the UPS and ALP, however it remains largely unknown how compromised autophagy affects UPS function in vivo. Here, we have studied the crosstalk between the UPS and ALP by investigating the tissue-specific effect of autophagy genes on the UPS at an organismal level. Using transgenic Caenorhabditis elegans expressing fluorescent UPS reporters, we show that the downregulation of the autophagy genes lgg-1 and lgg-2 (ATG8/LC3/GABARAP), bec-1 (BECLIN1), atg-7 (ATG7) and epg-5 (mEPG5) by RNAi decreases proteasomal degradation, concomitant with the accumulation of polyubiquitinated proteasomal substrates in a tissue-specific manner. For some of these genes, the changes in proteasomal degradation occur without a detectable alteration in proteasome tissue expression levels. In addition, the lgg-1 RNAi-induced reduction in proteasome activity in intestinal cells is not dependent on sqst-1/p62 accumulation. Our results illustrate that compromised autophagy can affect UPS in a tissue-specific manner, and demonstrate that UPS does not function as a direct compensatory mechanism in an animal. Further, a more profound understanding of the multilayered crosstalk between UPS and ALP can facilitate the development of therapeutic options for various disorders linked to dysfunction in proteostasis.