Browsing by Subject "bacteriophage"

Sort by: Order: Results:

Now showing items 1-20 of 20
  • Skurnik, Mikael; Jaakkola, Salla; Mattinen, Laura; von Ossowski, Lotta; Nawaz, Ayesha; Pajunen, Maria; Happonen, Lotta J. (2021)
    Bacteriophages vB_YpeM_fEV-1 (fEV-1) and vB_YpeM_fD1 (fD1) were isolated from incoming sewage water samples in Turku, Finland, using Yersinia pestis strains EV76 and KIM D27 as enrichment hosts, respectively. Genomic analysis and transmission electron microscopy established that fEV-1 is a novel type of dwarf myovirus, while fD1 is a T4-like myovirus. The genome sizes are 38 and 167 kb, respectively. To date, the morphology and genome sequences of some dwarf myoviruses have been described; however, a proteome characterization such as the one presented here, has currently been lacking for this group of viruses. Notably, fEV-1 is the first dwarf myovirus described for Y. pestis. The host range of fEV-1 was restricted strictly to Y. pestis strains, while that of fD1 also included other members of Enterobacterales such as Escherichia coli and Yersinia pseudotuberculosis. In this study, we present the life cycles, genomes, and proteomes of two Yersinia myoviruses, fEV-1 and fD1.
  • Oduor, Joseph M. Ochieng; Kadija, Ermir; Nyachieo, Atunga; Mureithi, Marianne W.; Skurnik, Mikael (2020)
    Emergence of antibiotic-resistant bacteria is a serious threat to the public health. This is also true for Staphylococcus aureus and other staphylococci. Staphylococcus phages Stab20, Stab21, Stab22, and Stab23, were isolated in Albania. Based on genomic and phylogenetic analysis, they were classified to genus Kayvirus of the subfamily Twortvirinae. In this work, we describe the in-depth characterization of the phages that electron microscopy confirmed to be myoviruses. These phages showed tolerance to pH range of 5.4 to 9.4, to maximum UV radiation energy of 25 mu J/cm(2), to temperatures up to 45 degrees C, and to ethanol concentrations up to 25%, and complete resistance to chloroform. The adsorption rate constants of the phages ranged between 1.0 x 10(-9) mL/min and 4.7 x 10(-9) mL/min, and the burst size was from 42 to 130 plaque-forming units. The phages Stab20, 21, 22, and 23, originally isolated using Staphylococcus xylosus as a host, demonstrated varied host ranges among different Staphylococcus strains suggesting that they could be included in cocktail formulations for therapeutic or bio-control purpose. Phage particle proteomes, consisting on average of ca 60-70 gene products, revealed, in addition to straight-forward structural proteins, also the presence of enzymes such DNA polymerase, helicases, recombinases, exonucleases, and RNA ligase polymer. They are likely to be injected into the bacteria along with the genomic DNA to take over the host metabolism as soon as possible after infection.
  • Mäntynen, Sari; Laanto, Elina; Oksanen, Hanna M.; Poranen, Minna M.; Diaz-Munoz, Samuel L. (2021)
    The canonical lytic-lysogenic binary has been challenged in recent years, as more evidence has emerged on alternative bacteriophage infection strategies. These infection modes are little studied, and yet they appear to be more abundant and ubiquitous in nature than previously recognized, and can play a significant role in the ecology and evolution of their bacterial hosts. In this review, we discuss the extent, causes and consequences of alternative phage lifestyles, and clarify conceptual and terminological confusion to facilitate research progress. We propose distinct definitions for the terms 'pseudolysogeny' and 'productive or non-productive chronic infection', and distinguish them from the carrier state life cycle, which describes a population-level phenomenon. Our review also finds that phages may change their infection modes in response to environmental conditions or the physiological state of the host cell. We outline known molecular mechanisms underlying the alternative phage-host interactions, including specific genetic pathways and their considerable biotechnological potential. Moreover, we discuss potential implications of the alternative phage lifestyles for microbial biology and ecosystem functioning, as well as applied topics such as phage therapy.
  • Hietikko, Alli (Helsingin yliopisto, 2019)
    Antibiotic-resistant bacteria are an increasing threat to global health, caused by the excessive use of antibiotics and the lack of new antimicrobial agents being introduced to the market. New approaches to prevent and cure bacterial infections are needed to halt the growing crisis. One of the most promising alternatives is phage therapy which utilizes bacteriophages to target and kill pathogens with specificity. Pseudomonas aeruginosa is a common opportunistic pathogen that is intrinsically resistant to antibiotics, making it one of the most heavily studied targets of phage therapy. In this study, I characterized four P. aeruginosa phages, fHo-Pae01, PA1P1, PA8P1 and PA11P1, and evaluate their potency in therapeutic applications. Bioinformatic analysis of the genomes revealed the phages to be genetically highly similar and belonging to the Pbunavirus genus of the Myoviridae family. No genes encoding harmful toxins, antibiotic-resistance, or lysogeny were predicted. On the other hand, many of the predicted genes had unknown functions. The host ranges of the phages were assessed using 47 clinical P. aeruginosa strains and predicted host receptor binding tail proteins were compared. Some correlation between the host ranges and mutations in the tail proteins were observed but this alone was not sufficient to explain the differences in the host ranges. The recently isolated vB_PaeM_fHoPae01 (fHo-Pae01) phage was further characterized by a one-step growth curve and imaged with a promising atomic force microscopy method that had not been used before in the Skurnik group. Though the imaging results failed to provide any further knowledge of the phage, the 70-minute-long latent period of infection could be determined from the growth curve. Anion- exchange chromatography was found inefficient in purifying the fHo-Pae01 phage, so alternative methods such as endotoxin columns should be used when purifying these phages for patient use. In conclusion, all four phages appeared to be safe for therapeutic use based on current knowledge, and PA1P1 and PA11P1 were the most promising candidates due to their broad host ranges.
  • Leskinen, Katarzyna; Tuomala, Henni; Wicklund, Anu; Horsma-Heikkinen, Jenni; Kuusela, Pentti; Skurnik, Mikael; Kiljunen, Saija (2017)
    Staphylococcus aureus is a commensal and pathogenic bacterium that causes infections in humans and animals. It is a major cause of nosocomial infections worldwide. Due to increasing prevalence of multidrug resistance, alternative methods to eradicate the pathogen are necessary. In this respect, polyvalent staphylococcal myoviruses have been demonstrated to be excellent candidates for phage therapy. Here we present the characterization of the bacteriophage vB_SauM-fRuSau02 (fRuSau02) that was isolated from a commercial Staphylococcus bacteriophage cocktail produced by Microgen (Moscow, Russia). The genomic analysis revealed that fRuSau02 is very closely related to the phage MSA6, and possesses a large genome (148,464 bp), with typical modular organization and a low G+ C (30.22%) content. It can therefore be classified as a new virus among the genus Twortlikevirus. The genome contains 236 predicted genes, 4 of which were interrupted by insertion sequences. Altogether, 78 different structural and virion-associated proteins were identified from purified phage particles by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The host range of fRuSau02 was tested with 135 strains, including 51 and 54 Staphylococcus aureus isolates from humans and pigs, respectively, and 30 coagulase-negative Staphylococcus strains of human origin. All clinical S. aureus strains were at least moderately sensitive to the phage, while only 39% of the pig strains were infected. Also, some strains of Staphylococcus intermedius, Staphylococcus lugdunensis, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus saprophyticus and Staphylococcus pseudointer were sensitive. We conclude that fRuSau02, a phage therapy agent in Russia, can serve as an alternative to antibiotic therapy against S. aureus.
  • Eskelin, Katri Johanna; Poranen, Minna Marjetta (2018)
    Viruses protect their genomes by enclosing them into protein capsids that sometimes contain lipid bilayers that either reside above or below the protein layer. Controlled dissociation of virions provides important information on virion composition, interactions, and stoichiometry of virion components, as well as their possible role in virus life cycles. Dissociation of viruses can be achieved by using various chemicals, enzymatic treatments, and incubation conditions. Asymmetrical flow field-flow fractionation (AF4) is a gentle method where the separation is based on size. Here, we applied AF4 for controlled dissociation of enveloped bacteriophage phi 6. Our results indicate that AF4 can be used to assay the efficiency of the dissociation process and to purify functional subviral particles.
  • Spruit, Cindy; Wicklund, Anu; Wan, Xing; Skurnik, Mikael; Pajunen, Maria (2020)
    The lytic phage, fHe-Kpn01 was isolated from sewage water using an extended-spectrum beta-lactamase-producing strain of Klebsiella pneumoniae as a host. The genome is 43,329 bp in size and contains direct terminal repeats of 222 bp. The genome contains 56 predicted genes, of which proteomics analysis detected 29 different proteins in purified phage particles. Comparison of fHe-Kpn01 to other phages, both morphologically and genetically, indicated that the phage belongs to the family Podoviridae and genus Drulisvirus. Because fHe-Kpn01 is strictly lytic and does not carry any known resistance or virulence genes, it is suitable for phage therapy. It has, however, a narrow host range since it infected only three of the 72 tested K. pneumoniae strains, two of which were of capsule type KL62. After annotation of the predicted genes based on the similarity to genes of known function and proteomics results on the virion-associated proteins, 22 gene products remained annotated as hypothetical proteins of unknown function (HPUF). These fHe-Kpn01 HPUFs were screened for their toxicity in Escherichia coli. Three of the HPUFs, encoded by the genes g10, g22, and g38, were confirmed to be toxic.
  • Badawy, Shimaa; Pajunen, Maria I.; Haiko, Johanna; Baka, Zakaria A. M.; Abou-Dobara, Mohamed; El-Sayed, Ahmed K. A.; Skurnik, Mikael (2020)
    Acinetobacter baumanniiis an opportunistic pathogen that presents a serious clinical challenge due to its increasing resistance to all available antibiotics. Phage therapy has been introduced recently to treat antibiotic-incurableA. baumanniiinfections. In search for newA. baumanniispecific bacteriophages, 20 clinicalA. baumanniistrains were used in two pools in an attempt to enrich phages from sewage. The enrichment resulted in induction of resident prophage(s) and three temperate bacteriophages, named vB_AbaS_fEg-Aba01, vB_AbaS_fLi-Aba02 and vB_AbaS_fLi-Aba03, all able to infect only one strain (#6597) of the 20 clinical strains, were isolated. Morphological characteristics obtained by transmission electron microscopy together with the genomic information revealed that the phages belong to the familySiphoviridae. The ca. 35 kb genomic sequences of the phages were >99% identical to each other. The linear ds DNA genomes of the phages contained 10 nt cohesive end termini, 52-54 predicted genes, anattPsite and one tRNA gene each. A database search revealed an >99% identical prophage in the genome ofA. baumanniistrain AbPK1 (acc. no. CP024576.1). Over 99% identical prophages were also identified from two of the original 20 clinical strains (#5707 and #5920) and both were shown to be spontaneously inducible, thus very likely being the origins of the isolated phages. The phage vB_AbaS_fEg-Aba01 was also able to lysogenize the susceptible strain #6597 demonstrating that it was fully functional. The phages showed a very narrow host range infecting only twoA. baumanniistrains. In conclusion, we have isolated and characterized three novel temperateSiphoviridaephages that infectA.baumannii.
  • Malmgren, Rasmus Albert (Helsingin yliopisto, 2021)
    The COVID-19 pandemic of 2019 has had a huge impact on the hospitality industry, decreasing production by 35.4% in Q4 of 2020. To keep the industry functional, new safety solutions have to be studied and developed for mitigation of the pandemic. In this study, airborne transmission of viruses in an indoor space was studied, and air purifiers and space dividers were tested as potential intervention methods against SARS-CoV-2 by using a non-pathogenic model virus phi 6. Filtered air purifiers were found to work as a possible solution for the mitigation of viruses spreading through aerosols in public spaces such as restaurants, however, the positioning of the devices is crucial, as the air flow to them may increase the concentration of viruses locally. Space dividers were found to increase the possibility of infection via aerosols. Other types of air purifiers were also tested: an ionizer prototype and a hydroxyl radical emitting unit, of which the ionizer prototype proved to be efficient in reducing the virus concentrations in the air. Most importantly, it was confirmed that enveloped viruses resembling coronaviruses are capable of spreading via aerosol transmission indoors.
  • Townsend, Eleanor M; Kelly, Lucy; Gannon, Lucy; Muscatt, George; Dunstan, Rhys; Michniewski, Slawomir; Sapkota, Hari; Kiljunen, Saija J; Kolsi, Anna; Skurnik, Mikael; Lithgow, Trevor; Millard, Andrew D; Jameson, Eleanor (2021)
    Introduction: Klebsiella is a clinically important pathogen causing a variety of antimicrobial resistant infections in both community and nosocomial settings, particularly pneumonia, urinary tract infection, and sepsis. Bacteriophage (phage) therapy is being considered a primary option for the treatment of drug-resistant infections of these types. Methods: We report the successful isolation and characterization of 30 novel, genetically diverse Klebsiella phages. Results: The isolated phages span six different phage families and nine genera, representing both lysogenic and lytic lifestyles. Individual Klebsiella phage isolates infected up to 11 of the 18 Klebsiella capsule types tested, and all 18 capsule-types were infected by at least one of the phages. Conclusions: Of the Klebsiella-infecting phages presented in this study, the lytic phages are most suitable for phage therapy, based on their broad host range, high virulence, short lysis period and given that they encode no known toxin or antimicrobial resistance genes. Phage isolates belonging to the Sugarlandvirus and Slopekvirus genera were deemed most suitable for phage therapy based on our characterization. Importantly, when applied alone, none of the characterized phages were able to suppress the growth of Klebsiella for more than 12 h, likely due to the inherent ease of Klebsiella to generate spontaneous phage-resistant mutants. This indicates that for successful phage therapy, a cocktail of multiple phages would be necessary to treat Klebsiella infections.
  • Leskinen, Katarzyna; Blasdel, Bob G.; Lavigne, Rob; Skurnik, Mikael (2016)
    Despite the expanding interest in bacterial viruses (bacteriophages), insights into the intracellular development of bacteriophage and its impact on bacterial physiology are still scarce. Here we investigate during lytic infection the whole-genome transcription of the giant phage vB_YecM_phi R1-37 (phi R1-37) and its host, the gastroenteritis causing bacterium Yersinia enterocolitica. RNA sequencing reveals that the gene expression of phi R1-37 does not follow a pattern typical observed in other lytic bacteriophages, as only selected genes could be classified as typically early, middle or late genes. The majority of the genes appear to be expressed constitutively throughout infection. Additionally, our study demonstrates that transcription occurs mainly from the positive strand, while the negative strand encodes only genes with low to medium expression levels. Interestingly, we also detected the presence of antisense RNA species, as well as one non-coding intragenic RNA species. Gene expression in the phage-infected cell is characterized by the broad replacement of host transcripts with phage transcripts. However, the host response in the late phase of infection was also characterized by up-regulation of several specific bacterial gene products known to be involved in stress response and membrane stability, including the Cpx pathway regulators, ATP-binding cassette (ABC) transporters, phage- and cold-shock proteins.
  • Kasurinen, Jutta; Spruit, Cindy M.; Wicklund, Anu; Pajunen, Maria I.; Skurnik, Mikael (2021)
    Bacteriophage vB_EcoM_fHy-Eco03 (fHy-Eco03 for short) was isolated from a sewage sample based on its ability to infect an Escherichia coli clinical blood culture isolate. Altogether, 32 genes encoding hypothetical proteins of unknown function (HPUFs) were identified from the genomic sequence of fHy-Eco03. The HPUFs were screened for toxic properties (toxHPUFs) with a novel, Next Generation Sequencing (NGS)-based approach. This approach identifies toxHPUF-encoding genes through comparison of gene-specific read coverages in DNA from pooled ligation mixtures before electroporation and pooled transformants after electroporation. The performance and reliability of the NGS screening assay was compared with a plating efficiency-based method, and both methods identified the fHy-Eco03 gene g05 product as toxic. While the outcomes of the two screenings were highly similar, the NGS screening assay outperformed the plating efficiency assay in both reliability and efficiency. The NGS screening assay can be used as a high throughput method in the search for new phage-inspired antimicrobial molecules.
  • Salem, Mabruka; Pajunen, Maria; Jun, Jin Woo; Skurnik, Mikael (2021)
    The Yersinia bacteriophages fPS-2, fPS-65, and fPS-90, isolated from pig stools, have long contractile tails and elongated heads, and they belong to genus Tequatroviruses in the order Caudovirales. The phages exhibited relatively wide host ranges among Yersinia pseudotuberculosis and related species. One-step growth curve experiments revealed that the phages have latent periods of 50-80 min with burst sizes of 44-65 virions per infected cell. The phage genomes consist of circularly permuted dsDNA of 169,060, 167,058, and 167,132 bp in size, respectively, with a G + C content 35.3%. The number of predicted genes range from 267 to 271. The phage genomes are 84-92% identical to each other and ca 85% identical to phage T4. The phage receptors were identified by whole genome sequencing of spontaneous phage-resistant mutants. The phage-resistant strains had mutations in the ompF, galU, hldD, or hldE genes. OmpF is a porin, and the other genes encode lipopolysaccharide (LPS) biosynthetic enzymes. The ompF, galU, and hldE mutants were successfully complemented in trans with respective wild-type genes. The host recognition was assigned to long tail fiber tip protein Gp38, analogous to that of T-even phages such as Salmonella phage S16, specifically to the distal beta-helices connecting loops.
  • Kolsi, Anna (Helsingin yliopisto, 2020)
    The objective of this thesis was to isolate and characterized phages from Beninese wastewater samples against clinical Acinetobacter baumannii strains for phage therapy use. A. baumannii is one of the most threatening nosocomial bacteria because most of the strains are resistant towards all commonly used antibiotics. One promising alternative treatment method could be phage therapy that utilizes lytic phages to dispose of specific bacteria. In this thesis, seven phages infecting clinical A. baumannii strains were isolated and two of them were characterized more in detail. Phages vB_AbaA_fBenAci001 (fBen-Aci001) and vB_Aba_fBenAci002 (fBen-Aci002) were members of the Friunavirus genus of the Autographiviridae family. In addition, they were the only phages characterised from their respective species to date. The genome analysis revealed 82.2% identity between the phages. No genes indicating lysogenic lifecycle, or genes encoding bacterial toxins or antibiotic resistance were identified from either of them. Phage fBen-Aci001 were infecting 4% and fBen-Aci002 were infecting 9% of tested 23 clinical A. baumannii isolates. Phylogenetic tree which was constructed based on whole genome sequences was compared to the trees that were made using tailspike proteins and capsid proteins. No correlation between genome-wide tree and trees built based on single genes were seen. In conclusion, the Beninese hospital wastewater appeared to be a good source for A. baumannii phages, as several phages were isolated and they were infecting clinical multidrug resistant strains isolated from Finnish patients. Phages fBen-Aci001 and fBen-Aci002 were concluded to be potential candidates to be used in the phage therapy though the narrow host range might negatively affect their usability.
  • Filik, Karolina; Szermer-Olearnik, Bozena; Wernecki, Maciej; Happonen, Lotta J.; Pajunen, Maria I.; Nawaz, Ayesha; Qasim, Muhammad Suleman; Jun, Jin Woo; Mattinen, Laura; Skurnik, Mikael; Brzozowska, Ewa (2020)
    We report here the complete genome sequence and characterization ofYersiniabacteriophage vB_YenP_phi 80-18. phi 80-18 was isolated in 1991 using aY. enterocoliticaserotype O:8 strain 8081 as a host from a sewage sample in Turku, Finland, and based on its morphological and genomic features is classified as a podovirus. The genome is 42 kb in size and has 325 bp direct terminal repeats characteristic for podoviruses. The genome contains 57 predicted genes, all encoded in the forward strand, of which 29 showed no similarity to any known genes. Phage particle proteome analysis identified altogether 24 phage particle-associated proteins (PPAPs) including those identified as structural proteins such as major capsid, scaffolding and tail component proteins. In addition, also the DNA helicase, DNA ligase, DNA polymerase, 5 '-exonuclease, and the lytic glycosylase proteins were identified as PPAPs, suggesting that they might be injected together with the phage genome into the host cell to facilitate the take-over of the host metabolism. The phage-encoded RNA-polymerase and DNA-primase were not among the PPAPs. Promoter search predicted the presence of four phage and eleven host RNA polymerase -specific promoters in the genome, suggesting that early transcription of the phage is host RNA-polymerase dependent and that the phage RNA polymerase takes over later. The phage tolerates pH values between 2 and 12, and is stable at 50 degrees C but is inactivated at 60 degrees C. It grows slowly with a 50 min latent period and has apparently a low burst size. Electron microscopy revealed that the phage has a head diameter of about 60 nm, and a short tail of 20 nm. Whole-genome phylogenetic analysis confirmed that phi 80-18 belongs to theAutographivirinaesubfamily of thePodoviridaefamily, that it is 93.2% identical toYersiniaphage fHe-Yen3-01. Host range analysis showed that phi 80-18 can infect in addition toY. enterocoliticaserotype O:8 strains also strains of serotypes O:4, O:4,32, O:20 and O:21, the latter ones representing similar toY. enterocoliticaserotype O:8, the American pathogenic biotype 1B strains. In conclusion, the phage phi 80-18 is a promising candidate for the biocontrol of the American biotype 1BY. enterocolitica.
  • Hietala, Ville; Horsma-Heikkinen, Jenni; Carron, Annelie; Skurnik, Mikael; Kiljunen, Saija (2019)
    The production of phages for therapeutic purposes demands fast, efficient and scalable purification procedures. Phage lysates have a wide range of impurities, of which endotoxins of gram-negative bacteria and protein toxins produced by many pathogenic bacterial species are harmful to humans. The highest allowed endotoxin concentration for parenterally applied medicines is 5 EU/kg/h. The aim of this study was to evaluate the feasibility of different purification methods in endotoxin and protein toxin removal in the production of phage preparations for clinical use. In the purification assays, we utilized three phages: Escherichia phage vB_EcoM_fHoEco02, Acinetobacter phage vB_ApiMiHyAci03, and Staphylococcus phage vB_SauMiRuSau02. The purification methods tested in the study were precipitation with polyethylene glycol, ultracentrifugation, ultrafiltration, anion exchange chromatography, octanol extraction, two different endotoxin removal columns, and different combinations thereof. The efficiency of the applied purification protocols was evaluated by measuring phage titer and either endotoxins or staphylococcal enterotoxins A and C (SEA and SEC, respectively) from samples taken from different purification steps. The most efficient procedure in endotoxin removal was the combination of ultrafiltration and EndoTrap HD affinity column, which was able to reduce the endotoxin-to-phage ratio of vB_EcoM_HoEco02 lysate from 3.5 x 10(4) Endotoxin Units (EU)/10(9) plaque forming units (PFU) to 0.09 EU/10 9 PFU. The combination of ultrafiltration and anion exchange chromatography resulted in ratio 96 EU/10(9) PFU, and the addition of octanol extraction step into this procedure still reduced this ratio threefold. The other methods tested either resulted to less efficient endotoxin removal or required the use of harmful chemicals that should be avoided when producing phage preparations for medical use. Ultrafiltration with 100,000 MWCO efficiently removed enterotoxins from vB_SauM_fRuSau02 lysate (from 1.3 to 0.06 ng SEA/10(9) PFU), and anion exchange chromatography reduced the enterotoxin concentration below 0.25 ng/ml, the detection limit of the assay.
  • Väistö, Anne (Helsingfors universitet, 2010)
    The properties and evaluation methods of viili, the actions and interactions of viili starters in milk and bacteriophages of the viili starters were reviewed. The aim of the experimental study was to explore whether it was possible to make viili with single strain starters and combine them just before adding the starter to the milk. A new, second viili starter was made from the new strains. The success of the new starters was evaluated by sensory evaluation and by analysing the texture and chemical properties of viili. The starter strains were cultivated in a bioreactor, concentrated by a centrifuge and frozen at –75 °C. The starter strains were combined approx. 1 day before the viili production. The sensory evaluation of the viili was performed by groups of 3 to 6 persons. The texture (consistency, firmness and cohesiveness) of the viili and chemical analysis were made. The results of the sensory analysis were analysed statistically and new strain combinations were formulated based results. The viilis made by the traditional viili starter strains were evaluated by the triangle test (n = 10–11) and the second viili starter was evaluated by descriptive analysis (n = 8). The texture measurements and chemical analyses were also performed. The viili produced by the second starter was infected by the factory phage samples and the pH was measured. After infecting the viili with phage samples, the viili produced by second starter was acidified to pH 4.5 from 0 to 10 hours later compared to the viili without the phage sample. The viili produced by traditional starter did not acidify when the phage was added. The aroma producers did not grow properly in viili when the starter was made by single strains. The viilis made by the present viili starter strains were not distinguished by the triangle test which meant that the starters are possible to make from single strains. The viilis produced by the second viili starter differed from the viili made by traditional starter by appearance and texture characteristics. There was no difference in taste characteristics between the traditional and new starter.
  • Leskinen, Katarzyna; Pajunen, Maria I.; Vilanova, Miguel Vincente Gomez-Raya; Kiljunen, Saija; Nelson, Andrew; Smith, Darren; Skurnik, Mikael (2020)
    YerA41 is a Myoviridae bacteriophage that was originally isolated due its ability to infect Yersinia ruckeri bacteria, the causative agent of enteric redmouth disease of salmonid fish. Several attempts to determine its genomic DNA sequence using traditional and next generation sequencing technologies failed, indicating that the phage genome is modified in such a way that it is an unsuitable template for PCR amplification and for conventional sequencing. To determine the YerA41 genome sequence, we performed RNA-sequencing from phage-infected Y. ruckeri cells at different time points post-infection. The host-genome specific reads were subtracted and de novo assembly was performed on the remaining unaligned reads. This resulted in nine phage-specific scaffolds with a total length of 143 kb that shared only low level and scattered identity to known sequences deposited in DNA databases. Annotation of the sequences revealed 201 predicted genes, most of which found no homologs in the databases. Proteome studies identified altogether 63 phage particle-associated proteins. The RNA-sequencing data were used to characterize the transcriptional control of YerA41 and to investigate its impact on the bacterial gene expression. Overall, our results indicate that RNA-sequencing can be successfully used to obtain the genomic sequence of non-sequencable phages, providing simultaneous information about the phage–host interactions during the process of infection.
  • Leon-Velarde, Carlos G.; Jun, Jin Woo; Skurnik, Mikael (2019)
    One of the human- and animal-pathogenic species in genus Yersinia is Yersinia enterocolitica, a food-borne zoonotic pathogen that causes enteric infections, mesenteric lymphadenitis, and sometimes sequelae such as reactive arthritis and erythema nodosum. Y. enterocolitica is able to proliferate at 4 degrees C, making it dangerous if contaminated food products are stored under refrigeration. The most common source of Y. enterocolitica is raw pork meat. Microbiological detection of the bacteria from food products is hampered by its slow growth rate as other bacteria overgrow it. Bacteriophages can be exploited in several ways to increase food safety with regards to contamination by Y. enterocolitica. For example, Yersinia phages could be useful in keeping the contamination of food products under control, or, alternatively, the specificity of the phages could be exploited in developing rapid and sensitive diagnostic tools for the identification of the bacteria in food products. In this review, we will discuss the present state of the research on these topics.