Browsing by Subject "black hole physics"

Sort by: Order: Results:

Now showing items 1-8 of 8
  • Valtonen, Mauri J.; Zola, Staszek; Pihajoki, Pauli; Enestam, Sissi; Lehto, Harry J.; Dey, Lankeswar; Gopakumar, Achamveedu; Drozdz, Marek; Ogloza, Waldemar; Zejmos, Michal; Gupta, Alok C.; Pursimo, Tapio; Ciprini, Stefano; Kidger, Mark; Nilsson, Kari; Berdyugin, Andrei; Piirola, Vilppu; Jermak, Helen; Hudec, Rene; Laine, Seppo (2019)
    In the binary black hole model of OJ. 287, the secondary black hole orbits a much more massive primary, and impacts on the primary accretion disk at predictable times. We update the parameters of the disk, the viscosity, alpha, and the mass accretion rate, . We find alpha = 0.26 +/- 0.1 and = 0.08 +/- 0.04 in Eddington units. The former value is consistent with Coroniti, and the latter with Marscher & Jorstad. Predictions are made for the 2019 July 30 superflare in OJ. 287. We expect that it will take place simultaneously at the Spitzer infrared channels, as well as in the optical, and that therefore the timing of the flare in optical can be accurately determined from Spitzer observations. We also discuss in detail the light curve of the 2015 flare, and find that the radiating volume has regions where bremsstrahlung dominates, as well as regions that radiate primarily in synchrotron radiation. The former region produces the unpolarized first flare, while the latter region gives rise to a highly polarized second flare.
  • Dey, Lankeswar; Valtonen, M. J.; Gopakumar, A.; Zola, S.; Hudec, R.; Pihajoki, P.; Ciprini, S.; Matsumoto, K.; Sadakane, K.; Kidger, M.; Nilsson, K.; Mikkola, S.; Sillanpaa, A.; Takalo, L. O.; Lehto, H. J.; Berdyugin, A.; Piirola, V.; Jermak, H.; Baliyan, K. S.; Pursimo, T.; Caton, D. B.; Alicavus, F.; Baransky, A.; Blay, P.; Boumis, P.; Boyd, D.; Campas Torrent, M.; Campos, F.; Carrillo Gomez, J.; Chandra, S.; Chavushyan, V.; Dalessio, J.; Debski, B.; Drozdz, M.; Er, H.; Erdem, A.; Escartin Perez, A.; Ramazani, V. Fallah; Filippenko, A. V.; Gafton, E.; Ganesh, S.; Garcia, F.; Gazeas, K.; Godunova, V.; Gomez Pinilla, F.; Gopinathan, M.; Haislip, J. B.; Harmanen, J.; Hurst, G.; Janik, J.; Jelinek, M.; Joshi, A.; Kagitani, M.; Karjalainen, R.; Kaur, N.; Keel, W. C.; Kouprianov, V. V.; Kundera, T.; Kurowski, S.; Kvammen, A.; LaCluyze, A. P.; Lee, B. C.; Liakos, A.; Lindfors, E.; Lozano de Haro, J.; Mugrauer, M.; Naves Nogues, R.; Neely, A. W.; Nelson, R. H.; Ogloza, W.; Okano, S.; Pajdosz-Smierciak, U.; Pandey, J. C.; Perri, M.; Poyner, G.; Provencal, J.; Raj, A.; Reichart, D. E.; Reinthal, R.; Reynolds, T.; Saario, J.; Sadegi, S.; Sakanoi, T.; Salto Gonzalez, J. -L.; Sameer,; Schweyer, T.; Simon, A.; Siwak, M.; Soldan Alfaro, F. C.; Sonbas, E.; Steele, I.; Stocke, J. T.; Strobl, J.; Tomov, T.; Tremosa Espasa, L.; Valdes, J. R.; Valero Perez, J.; Verrecchia, F.; Vasylenko, V.; Webb, J. R.; Yoneda, M.; Zejmo, M.; Zheng, W.; Zielinski, P. (2018)
    Results from regular monitoring of relativistic compact binaries like PSR 1913+16 are consistent with the dominant (quadrupole) order emission of gravitational waves (GWs). We show that observations associated with the binary black hole (BBH) central engine of blazar OJ 287 demand the inclusion of gravitational radiation reaction effects beyond the quadrupolar order. It turns out that even the effects of certain hereditary contributions to GW emission are required to predict impact flare timings of OJ 287. We develop an approach that incorporates this effect into the BBH model for OJ 287. This allows us to demonstrate an excellent agreement between the observed impact flare timings and those predicted from ten orbital cycles of the BBH central engine model. The deduced rate of orbital period decay is nine orders of magnitude higher than the observed rate in PSR 1913+16, demonstrating again the relativistic nature of OJ 287's central engine. Finally, we argue that precise timing of the predicted 2019 impact flare should allow a test of the celebrated black hole "no-hair theorem" at the 10% level.
  • Pihajoki, Pauli; Mannerkoski, Matias; Johansson, Peter H. (2019)
    Interpolation of data represented in curvilinear coordinates and possibly having some non-trivial, typically Riemannian or semi-Riemannian geometry is a ubiquitous task in all of physics. In this work, we present a covariant generalization of the barycentric coordinates and the barycentric interpolation method for Riemannian and semi-Riemannian spaces of arbitrary dimension. We show that our new method preserves the linear accuracy property of barycentric interpolation in a coordinate-invariant sense. In addition, we show how the method can be used to interpolate constrained quantities so that the given constraint is automatically respected. We showcase the method with two astrophysics related examples situated in the curved Kerr space-time. The first problem is interpolating a locally constant vector field, in which case curvature effects are expected to be maximally important. The second example is a general relativistic magnetohydrodynamics simulation of a turbulent accretion flow around a black hole, wherein high intrinsic variability is expected to be at least as important as curvature effects.
  • Rantala, Antti; Pihajoki, Pauli; Johansson, Peter H.; Naab, Thorsten; Lahen, Natalia; Sawala, Till (2017)
    We present KETJU, a new extension of the widely used smoothed particle hydrodynamics simulation code GADGET-3. The key feature of the code is the inclusion of algorithmically regularized regions around every supermassive black hole (SMBH). This allows for simultaneously following global galactic-scale dynamical and astrophysical processes, while solving the dynamics of SMBHs, SMBH binaries, and surrounding stellar systems at subparsec scales. The KETJU code includes post-Newtonian terms in the equations of motions of the SMBHs, which enables a new SMBH merger criterion based on the gravitational wave coalescence timescale, pushing the merger separation of SMBHs down to similar to 0.005 pc. We test the performance of our code by comparison to NBODY7 and rVINE. We set up dynamically stable multicomponent merger progenitor galaxies to study the SMBH binary evolution during galaxy mergers. In our simulation sample the SMBH binaries do not suffer from the final-parsec problem, which we attribute to the nonspherical shape of the merger remnants. For bulge-only models, the hardening rate decreases with increasing resolution, whereas for models that in addition include massive dark matter halos, the SMBH binary hardening rate becomes practically independent of the mass resolution of the stellar bulge. The SMBHs coalesce on average 200 Myr after the formation of the SMBH binary. However, small differences in the initial SMBH binary eccentricities can result in large differences in the SMBH coalescence times. Finally, we discuss the future prospects of KETJU, which allows for a straightforward inclusion of gas physics in the simulations.
  • Shankar, Francesco; Bernardi, Mariangela; Sheth, Ravi K.; Ferrarese, Laura; Graham, Alister W.; Savorgnan, Giulia; Allevato, Viola; Marconi, Alessandro; Läsker, Ronald; Lapi, Andrea (2016)
    We compare the set of local galaxies having dynamically measured black holes with a large, unbiased sample of galaxies extracted from the Sloan Digital Sky Survey. We confirm earlier work showing that the majority of black hole hosts have significantly higher velocity dispersions sigma than local galaxies of similar stellar mass. We use Monte Carlo simulations to illustrate the effect on black hole scaling relations if this bias arises from the requirement that the black hole sphere of influence must be resolved to measure black hole masses with spatially resolved kinematics. We find that this selection effect artificially increases the normalization of the M-bh-sigma relation by a factor of at least similar to 3; the bias for the M-bh-M-star relation is even larger. Our Monte Carlo simulations and analysis of the residuals from scaling relations both indicate that sigma is more fundamental than M-star or effective radius. In particular, the M-bh-M-star relation is mostly a consequence of the M-bh-sigma and sigma-M-star relations, and is heavily biased by up to a factor of 50 at small masses. This helps resolve the discrepancy between dynamically based black hole-galaxy scaling relations versus those of active galaxies. Our simulations also disfavour broad distributions of black hole masses at fixed sigma. Correcting for this bias suggests that the calibration factor used to estimate black hole masses in active galaxies should be reduced to values of f(vir) similar to 1. Black hole mass densities should also be proportionally smaller, perhaps implying significantly higher radiative efficiencies/black hole spins. Reducing black hole masses also reduces the gravitational wave signal expected from black hole mergers.
  • Habouzit, Melanie; Li, Yuan; Somerville, Rachel S.; Genel, Shy; Pillepich, Annalisa; Volonteri, Marta; Dave, Romeel; Rosas-Guevara, Yetli; McAlpine, Stuart; Peirani, Sebastien; Hernquist, Lars; Anglés-Alcázar, Daniel; Reines, Amy; Bower, Richard; Dubois, Yohan; Nelson, Dylan; Pichon, Christophe; Vogelsberger, Mark (2021)
    The past decade has seen significant progress in understanding galaxy formation and evolution using large-scale cosmological simulations. While these simulations produce galaxies in overall good agreement with observations, they employ different sub-grid models for galaxies and supermassive black holes (BHs). We investigate the impact of the sub-grid models on the BH mass properties of the Illustris, TNG100, TNG300, Horizon-AGN, EAGLE, and SIMBA simulations, focusing on the M-BH - M-star relation and the BH mass function. All simulations predict tight M-BH - M-star relations, and struggle to produce BHs of M-BH = 109M (circle dot) in most of the simulations. The BH mass function is dominated by efficiently accreting BHs ((log(10) f(Edd) >= -2) at high redshifts, and transitions progressively from the high-mass to the low-mass end to be governed by inactive BHs. The transition time and the contribution of active BHs are different among the simulations, and can be used to evaluate models against observations.
  • Rawlings, Alexander (Helsingin yliopisto, 2021)
    This thesis presents the results from seventeen collisionless merger simulations of massive early-type galaxies in an effort to understand the coalescence of supermassive black holes (SMBHs) in the context of the Final Parsec Problem. A review of the properties of massive early-type galaxies and their SMBHs is presented alongside a discussion on SMBH binary coalescence to motivate the initial conditions used in the simulations. The effects of varying SMBH mass and stellar density profiles in the progenitor initial conditions on SMBH coalescence was investigated. Differing mass resolutions between the stellar particles and the SMBHs for each physical realisation were also tested. The simulations were performed on the supercomputers Puhti and Mahti at CSC, the Finnish IT Centre for Science. SMBH coalescence was found to only occur in mergers involving SMBH binaries of equal mass, with the most rapid coalescence observed in galaxies with a steep density profile. In particular, the eccentricity of the SMBH binary was observed to be crucial for coalescence: all simulations that coalesced displayed an orbital eccentricity in excess of e=0.7 for the majority of the time for which the binary was bound. Simulations of higher mass resolution were found to have an increased number of stellar particles able to positively interact with the SMBH binary to remove orbital energy and angular momentum, driving the binary to coalescence. The gravitational wave emission from an equal mass SMBH binary in the final stages before merging was calculated to be within the detection limits required for measurement by pulsar timing arrays. Mergers between galaxies of unequal mass SMBHs were unable to undergo coalescence irrespective of mass resolution or progenitor density profile, despite the binary in some of these simulations displaying a high orbital eccentricity. It was determined that the stellar particles interacting with the SMBH binary were unable to remove the required orbital energy and angular momentum to bring the SMBHs to within the separation required for efficient gravitational wave emission. A trend between increasing mass resolution and increasing number of stellar particles able to remove energy from the SMBH binary was observed across all the simulation suites. This observation is of paramount importance, as three-body interactions are essential in removing orbital energy and angular momentum from the SMBH binary, thus overcoming the Final Parsec Problem. As such, it is concluded that the Final Parsec Problem is a numerical artefact arising from insufficient mass resolution between the stellar particles and the SMBHs rather than a physical phenomenon.
  • Suh, Hyewon; Civano, Francesca; Hasinger, Guenther; Lusso, Elisabeta; Lanzuisi, Giorgio; Marchesi, Stefano; Trakhtenbrot, Benny; Allevato, Viola; Cappelluti, Nico; Capak, Peter L.; Elvis, Martin; Griffiths, Richard E.; Laigle, Clotilde; Lira, Paulina; Riguccini, Laurie; Rosario, David J.; Salvato, Mara; Schawinski, Kevin; Vignali, Cristian (2017)
    We investigate the star formation properties of a large sample of similar to 2300 X-ray-selected Type 2 Active Galactic Nuclei (AGNs) host galaxies out to z similar to 3 in the Chandra COSMOS Legacy Survey in order to understand the connection between the star formation and nuclear activity. Making use of the existing multi-wavelength photometric data available in the COSMOS field, we perform a multi-component modeling from far-infrared to near-ultraviolet using a nuclear dust torus model, a stellar population model and a starburst model of the spectral energy distributions (SEDs). Through detailed analyses of SEDs, we derive the stellar masses and the star formation rates (SFRs) of Type 2 AGN host galaxies. The stellar mass of our sample is in the range of 9 <logM(stellar)/M-circle dot <12 with uncertainties of similar to 0.19 dex. We find that Type 2 AGN host galaxies have, on average, similar SFRs compared to the normal star-forming galaxies with similar M-stellar and redshift ranges, suggesting no significant evidence for enhancement or quenching of star formation. This could be interpreted in a scenario, where the relative massive galaxies have already experienced substantial growth at higher redshift (z > 3), and grow slowly through secular fueling processes hosting moderate-luminosity AGNs.