Browsing by Subject "boreal biome"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Myllyviita, Tanja; Sironen, Susanna; Saikku, Laura; Holma, Anne; Leskinen, Pekka; Palme, Ulrika (2019)
    Journal of Cleaner Production 236: 117641
    Impacts of bioeconomy on climate have been much discussed, but less attention has been given to biodiversity deterioration. One approach to assess biodiversity impacts is Life Cycle Assessment (LCA). Finland is a forested country with intensive forest industries, but only coarse biodiversity LCA methods are available. The aim of this study was to further develop and apply approaches to assess the biodiversity impacts of wood use in Finland. With the species richness approach (all taxons included), biodiversity impacts were higher in Southern than in Northern Finland but impacts in Southern and Northern Finland were lower when mammals, birds and molluscs were included. With the ecosystem indicators approach, if the reference situation were forest in its natural state, biodiversity impacts were higher than in the case where the initial state of forest before final felling was used to derive biodiversity loss. In both cases, the biodiversity impacts were higher in Northern Finland. These results were not coherent as the model applying species richness data assesses biodiversity loss based on all species, whereas the ecosystem indicators approach considers vulnerable species. One limitation of the species richness approach was that there were no reliable datasets available. In the ecosystem indicators approach, it was noticed that the biodiversity of managed Finnish forests is substantially lower than in natural forests. Biodiversity LCA approaches are highly sensitive to reference states, applied model and data. It is essential to develop approaches capable of comparing biodiversity impacts of forest management practices, or when looking at multiple environmental impacts simultaneously with the LCA framework.
  • Wymore, Adam S.; Johnes, Penny J.; Bernal, Susana; Brookshire, E. N. Jack; Fazekas, Hannah M.; Helton, Ashley M.; Argerich, Alba; Barnes, Rebecca T.; Coble, Ashley A.; Dodds, Walter K.; Haq, Shahan; Johnson, Sherri L.; Jones, Jeremy B.; Kaushal, Sujay S.; Kortelainen, Pirkko; López-Lloreda, Carla; Rodríguez-Cardona, Bianca M.; Spencer, Robert G. M.; Sullivan, Pamela L.; Yates, Christopher A.; McDowell, William H. (American Geophysical Union, 2021)
    Global Biogeochemical Cycles, 35(8), e2021GB006953
    A comprehensive cross-biome assessment of major nitrogen (N) species that includes dissolved organic N (DON) is central to understanding interactions between inorganic nutrients and organic matter in running waters. Here, we synthesize stream water N chemistry across biomes and find that the composition of the dissolved N pool shifts from highly heterogeneous to primarily comprised of inorganic N, in tandem with dissolved organic matter (DOM) becoming more N-rich, in response to nutrient enrichment from human disturbances. We identify two critical thresholds of total dissolved N (TDN) concentrations where the proportions of organic and inorganic N shift. With low TDN concentrations (0–1.3 mg/L N), the dominant form of N is highly variable, and DON ranges from 0% to 100% of TDN. At TDN concentrations above 2.8 mg/L, inorganic N dominates the N pool and DON rarely exceeds 25% of TDN. This transition to inorganic N dominance coincides with a shift in the stoichiometry of the DOM pool, where DOM becomes progressively enriched in N and DON concentrations are less tightly associated with concentrations of dissolved organic carbon (DOC). This shift in DOM stoichiometry (defined as DOC:DON ratios) suggests that fundamental changes in the biogeochemical cycles of C and N in freshwater ecosystems are occurring across the globe as human activity alters inorganic N and DOM sources and availability. Alterations to DOM stoichiometry are likely to have important implications for both the fate of DOM and its role as a source of N as it is transported downstream to the coastal ocean.