Browsing by Subject "chlorophyll fluorescence"

Sort by: Order: Results:

Now showing items 1-13 of 13
  • Kemppinen, Jasmin (Helsingin yliopisto, 2020)
    Reactive oxygen species (ROS) are one of the prominent groups of signal compounds that are produced in stress conditions such as excess light. Nuclear protein RADICAL-INDUCED CELL DEAT (RCD1) is sensitive to ROS and controls the expression of organelle components, e.g. mitochondrial alternative oxidases (AOX), thus balancing the redox-status of a plant cell. Plants have fast responses to fluctuating light conditions that happen even before gene expression: i.e. readjusting the capability to receive light energy between the two photosystems by state transitions and increasing the capacity to remove excess energy by non-photochemical quenching (NPQ). Various small auxiliary proteins function in these fast acclimation events. However, many of them are identified on gene level only. The goal of this master’s thesis is to describe the role of a hypothetical protein, PPD8 in Arabidopsis thaliana. We evaluate how PPD8 is associated with RCD1 and a chloroplast thiol-regulator enzyme NTRC. We created double (rcd1 ppd8) and triple mutant plant lines (rcd1 ppd8 ntrc) by crossing single knockout lines ppd8, rcd1 and ntrc. Photosynthetic performance, NPQ and sensitivity to ROS were observed in each line by using two different chlorophyll fluorescence measurement methods: pulse-amplitude-modulation (PAM) and novel OJIP imaging fluorometry. The leaves were exposed to methyl viologen (MV), which accelerates the chloroplastic ROS production in light, and also to hypoxic conditions in order to study how the effect of MV is altered in low concentrations of oxygen. Additionally, we examined the amount of photosynthetic proteins and stoichiometry of photosystems in ppd8, rcd1 and rcd1 ppd8 by immunological methods. Finally, PPD8 gene with attached hemagglutinin encoding tags was generated by cloning and reintroduced back to the ppd8 knockout lines. Plants lacking RCD1 are very tolerant against MV and ROS, but when rcd1 was crossed with ppd8 the resistance was suppressed. Both rcd1 ppd8 and ppd8 exhibited elevated chlorophyll fluorescence and NPQ values. The removal of PPD8 gene had an impact on the abundance and the stoichiometry of photosynthetic proteins reducing the plants’ performance. When RCD1, PPD8 and NTRC were simultaneously absent the plants had major defects: their NPQ and fluorescence values were drastically increased. Furthermore, several results hinted towards possible issues in the function of ATP synthase in ppd8 background plants. It is also known that NTRC regulates ATP synthase: taken together, the results suggest that PPD8 is necessary for a fully operative ATP synthase and photosynthetic machinery. By reintroducing PPD8 to knockout line ppd8, the phenotype could be reverted back to wild type -like, thus confirming the significance of the PPD8 gene product in plant.
  • Magney, Troy S.; Frankenberg, Christian; Kohler, Philipp; North, Gretchen; Davis, Thomas S.; Dold, Christian; Dutta, Debsunder; Fisher, Joshua B.; Grossmann, Katja; Harrington, Alexis; Hatfield, Jerry; Stutz, Jochen; Sun, Ying; Porcar-Castell, Albert (2019)
    Novel satellite measurements of solar-induced chlorophyll fluorescence (SIF) can improve our understanding of global photosynthesis; however, little is known about how to interpret the controls on its spectral variability. To address this, we disentangle simultaneous drivers of fluorescence spectra by coupling active and passive fluorescence measurements with photosynthesis. We show empirical and mechanistic evidence for where, why, and to what extent leaf fluorescence spectra change. Three distinct components explain more than 95% of the variance in leaf fluorescence spectra under both steady-state and changing illumination conditions. A single spectral shape of fluorescence explains 84% of the variance across a wide range of species. The magnitude of this shape responds to absorbed light and photosynthetic up/down regulation; meanwhile, chlorophyll concentration and nonphotochemical quenching control 9% and 3% of the remaining spectral variance, respectively. The spectral shape of fluorescence is remarkably stable where most current satellite retrievals occur (far-red, >740nm), and dynamic downregulation of photosynthesis reduces fluorescence magnitude similarly across the 670- to 850-nm range. We conduct an exploratory analysis of hourly red and far-red canopy SIF in soybean, which shows a subtle change in red:far-red fluorescence coincident with photosynthetic downregulation but is overshadowed by longer-term changes in canopy chlorophyll and structure. Based on our leaf and canopy analysis, caution should be taken when attributing large changes in the spectral shape of remotely sensed SIF to plant stress, particularly if data acquisition is temporally sparse. Ultimately, changes in SIF magnitude at wavelengths greater than 740 nm alone may prove sufficient for tracking photosynthetic dynamics. Plain Language Summary Satellite remote sensing provides a global picture of photosynthetic activity-allowing us to see when, where, and how much CO2 plants are assimilating. To do this, satellites measure a small emission of energy from the plants called chlorophyll fluorescence. However, this measurement is typically made across a narrow wavelength range, while the emission spectrum (650-850 nm) is quite dynamic. We show where, why, and to what extent leaf fluorescence spectra change across a diverse range of species and conditions, ultimately informing canopy remote sensing measurements. Results suggest that wavelengths currently used by satellites are stable enough to track the downregulation of photosynthesis resulting from stress, while spectral shape changes respond more strongly to dynamics in canopy structure and chlorophyll concentration.
  • Ayvaz, Muavviz; Guven, Avni; Fagerstedt, Kurt Valter (2015)
    Potato crop production in Turkey ranks on the thirteenth place in the world. Toxicity is a problematic issue for some parts of the Turkish soils. Hence, it is very important to clarify the physiological responses of plants to toxic mineral stress. In this study, two different potato cultivars - Solanum tuberosum cv. Resy and Solanum tuberosum cv. Agria - were used as a study material. Excess boron was applied in two different concentrations (5 mmol/L and 12.5 mmol/L) 32 days after planting the tubers. Plants were harvested at the end of 15 days of excess boron application. Chlorophyll fluorescence (Fv/Fm) was measured. Shoot height and shoot-root fresh weight contents were determined. Analyses were carried out for the contents of the endogenous hormones indole-3-acetic acid (IAA) and abscisic acid (ABA) by using gas chromatography-mass spectrophotometry (GS-MS). According to the obtained data, plants' shoot height did not change, whereas the shoot's fresh weight decreased significantly with increasing of the boron concentrations in cv Resy, by applying 12.5 mmol/L boron. With 12.5 mmol/L boron, the photosynthesis was negatively affected in both cultivars. Boron application led to increased endogenous IAA and ABA content in both cultivars. As a result, cv. Resy showed more resistance to excess boron. Findings on the hormone metabolism and chlorophyll fluorescence in different cultivars will shed a light on understanding the physiological response to excess mineral stress.
  • Kolari, Pasi; Chan, Tommy; Porcar-Castell, Albert; Back, Jaana; Nikinmaa, Eero; Juurola, Eija (2014)
  • Khazaei, Hamid; Wach, Damian; Pecio, Alicja; Vandenberg, Albert; Stoddard, Frederick L. (2019)
    Increasing productivity through improvement of photosynthesis in faba bean breeding programmes requires understanding of the genetic control of photosynthesis-related traits. Hence, we investigated the gene action of leaf area, gas exchange traits, canopy temperature, chlorophyll content, chlorophyll fluorescence parameters and biomass. We chose inbred lines derived from cultivars 'Aurora' (Sweden) and 'Melodie' (France) along with an Andean accession, ILB 938, crossed them (Aurora/2 x Melodie/2, ILB 938/2 x Aurora/2 and Melodie/2 x ILB 938/2), and prepared the six standard generations for quantitative analysis (P-1, P-2, F-1, F-2, B-1, and B-2). Gene action was complex for each trait, involving additive and dominance gene actions and interactions. Additive gene action was important for SPAD, photosynthetic rate, stomatal conductance and F-v/F-m. Dominance effect was important for biomass production. It is suggested that breeders selecting for productivity can maximize genetic gain by selecting early generations for canopy temperature, SPAD and F-v/F-m, then later generations for biomass. The information on genetics of various contributing traits of photosynthesis will assist plant breeders in choosing an appropriate breeding strategy for enhancing productivity in faba bean.
  • Mariotti, Lorenzo; Huarancca Reyes, Thais; Ramos-Diaz, Jose Martin; Jouppila, Kirsi; Guglielminetti, Lorenzo (2021)
    Increased ultraviolet-B (UV-B) due to global change can affect plant development and metabolism. Quinoa tolerates extreme conditions including high UV levels. However, the physiological mechanisms behind its abiotic stress tolerance are unclear, especially those related to UV-B. We previously demonstrated that 9.12 kJ m−2 d−1 may induce UV-B-specific signaling while 18.24 kJ m−2 d−1 promotes a UV-B-independent response. Here, we explored the effects of these UV-B doses on hormonal regulation linked to plant morphology and defense among diverse varieties. Changes in fluorescence parameters of photosystem II, flavonoids and hormones (indoleacetic acid (IAA), jasmonic acid (JA), abscisic acid (ABA) and salicylic acid (SA)) were surveyed under controlled conditions. Here, we showed that the sensitivity to short acute UV-B doses in varieties from different habitats is influenced by their parental lines and breeding time. UV-B sensitivity does not necessarily correlate with quinoa’s geographical distribution. The role of flavonoids in the UV-B response seems to be different depending on varieties. Moreover, we found that the extent of changes in JA and SA correlate with UV-B tolerance, while the increase of ABA was mainly related to UV-B stress.
  • Pavicic, Mirko; Overmyer, Kirk; Rehman, Attiq ur; Jones, Piet; Jacobson, Daniel; Himanen, Kristiina (2021)
    Image-based symptom scoring of plant diseases is a powerful tool for associating disease resistance with plant genotypes. Advancements in technology have enabled new imaging and image processing strategies for statistical analysis of time-course experiments. There are several tools available for analyzing symptoms on leaves and fruits of crop plants, but only a few are available for the model plant Arabidopsis thaliana (Arabidopsis). Arabidopsis and the model fungus Botrytis cinerea (Botrytis) comprise a potent model pathosystem for the identification of signaling pathways confer- ring immunity against this broad host-range necrotrophic fungus. Here, we present two strategies to assess severity and symptom progression of Botrytis infection over time in Arabidopsis leaves. Thus, a pixel classification strategy using color hue values from red-green-blue (RGB) images and a random forest algorithm was used to establish necrotic, chlorotic, and healthy leaf areas. Secondly, using chlorophyll fluorescence (ChlFl) imaging, the maximum quantum yield of photosystem II (Fv/Fm) was determined to define diseased areas and their proportion per total leaf area. Both RGB and ChlFl imaging strategies were employed to track disease progression over time. This has provided a robust and sensitive method for detecting sensitive or resistant genetic backgrounds. A full methodological workflow, from plant culture to data analysis, is described.
  • Rajewicz, Paulina A.; Atherton, Jon; Alonso, Luis; Porcar-Castell, Albert (2019)
    Successful measurements of chlorophyll fluorescence (ChlF) spectral properties (typically in the wavelength range of 650-850 nm) across plant species, environmental conditions, and stress levels are a first step towards establishing a quantitative link between solar-induced chlorophyll fluorescence (SIF), which can only be measured at discrete ChlF spectral bands, and photosynthetic functionality. Despite its importance and significance, the various methodologies for the estimation of leaf-level ChlF spectral properties have not yet been compared, especially when applied to leaves with complex morphology, such as needles. Here we present, to the best of our knowledge, a first comparison of protocols for measuring leaf-level ChlF spectra: a custom-made system designed to measure ChlF spectra at ambient and 77 K temperatures (optical chamber, OC), the widely used FluoWat leaf clip (FW), and an integrating sphere setup (IS). We test the three methods under low-light conditions, across two broadleaf species and one needle-like species. For the conifer, we characterize the effect of needle arrangements: one needle, three needles, and needle mats with as little gap fraction as technically possible. We also introduce a simple baseline correction method to account for non-fluorescence-related contributions to spectral measurements. Baseline correction was found especially useful in recovering the spectra nearby the filter cut-off. Results show that the shape of the leaf-level ChlF spectra remained largely unaffected by the measurement methodology and geometry in OC and FW methods. Substantially smaller red/far-red ratios were observed in the IS method. The comparison of needle arrangements indicated that needle mats could be a practical solution to investigate temporal changes in ChlF spectra of needle-like leaves as they produced more reproducible results and higher signals.
  • Bendig, Juliane; Chang, C. Y.; Wang, N.; Atherton, Jon; Malenovsky, Zbynek; Rascher, Uwe (IEEE, 2021)
    Demand for high spatial and temporal resolution measurements has triggered a rapid development of unmanned aircraft systems (UAS) for plant phenotyping and precision farming purposes. Similarly, recent progress in low-altitude remote sensing of solar-induced chlorophyll fluorescence (SIF) resulted in several studies aiming at the development of SIF proximal sensing approaches. Although first experimental results are promising, the requirements for reliable and repeatable measurements in agricultural experiments still constrain applicability of these platforms. In this study, we analyze current capabilities and potentials of SIF measuring UAS for operational use. We highlight existing challenges and outline how UAS SIF sensing could be used more frequently and reliably in precision agriculture applications in the near future.
  • Aalto, J.; Porcar-Castell, A.; Atherton, J.; Kolari, P.; Pohja, T.; Hari, P.; Nikinmaa, E.; Petäjä, T.; Bäck, J. (2015)
    Emissions of biogenic volatile organic compounds (BVOC) by boreal evergreen trees have strong seasonality, with low emission rates during photosynthetically inactive winter and increasing rates towards summer. Yet, the regulation of this seasonality remains unclear. We measured in situ monoterpene emissions from Scots pine shoots during several spring periods and analysed their dynamics in connection with the spring recovery of photosynthesis. We found high emission peaks caused by enhanced monoterpene synthesis consistently during every spring period (monoterpene emission bursts, MEB). The timing of the MEBs varied relatively little between the spring periods. The timing of the MEBs showed good agreement with the photosynthetic spring recovery, which was studied with simultaneous measurements of chlorophyll fluorescence, CO2 exchange and a simple, temperature history-based proxy for state of photosynthetic acclimation, S. We conclude that the MEBs were related to the early stages of photosynthetic recovery, when the efficiency of photosynthetic carbon reactions is still low whereas the light harvesting machinery actively absorbs light energy. This suggests that the MEBs may serve a protective functional role for the foliage during this critical transitory state and that these high emission peaks may contribute to atmospheric chemistry in the boreal forest in springtime. Emissions of biogenic volatile organic compounds (BVOC) by boreal evergreen trees have strong seasonality. We measured high emission peaks from Scots pine shoots caused by enhanced monoterpene synthesis taking place simultaneously with the photosynthetic spring recovery. We conclude that the increased emissions were related to the photosynthetic recovery, when the efficiency of photosynthetic carbon reactions is low whereas the light harvesting machinery actively absorbs light energy. Increased emissions may serve a protective functional role for the foliage during the transitory state, and these high emission peaks may contribute to atmospheric chemistry in the boreal forest in springtime.
  • Atherton, Jon; Olascoaga, Benat; Alonso, Luis; Porcar-Castell, Albert (2017)
    Leaf Optical Properties (LOPs) convey information relating to temporally dynamic photosynthetic activity and biochemistry. LOPs are also sensitive to variability in anatomically related traits such as Specific Leaf Area (SLA), via the interplay of intra-leaf light scattering and absorption processes. Therefore, variability in such traits, which may demonstrate little plasticity over time, potentially disrupts remote sensing estimates of photosynthesis or biochemistry across space. To help to disentangle the various factors that contribute to the variability of LOPs, we defined baseline variation as variation in LOPs that occurs across space, but not time. Next we hypothesized that there were two main controls of potentially disruptive baseline spatial variability of photosynthetically-related LOPs at our boreal forest site: light environment and species. We measured photosynthetically-related LOPs in conjunction with morphological, biochemical, and photosynthetic leaf traits during summer and across selected boreal tree species and vertical gradients in light environment. We then conducted a detailed correlation analysis to disentangle the spatial factors that control baseline variability of leaf traits and, resultantly, LOPs. Baseline spatial variability of the Photochemical Reflectance Index (PRI) was strongly influenced by species and to a lesser extent light environment. Baseline variability of spectral fluorescence derived LOPs was less influenced by species; however at longer near-infrared wavelengths, light environment was an important control. In summary, remote sensing of chlorophyll fluorescence has good potential to detect variation in photosynthetic performance across space in boreal forests given reduced sensitivity to species related baseline variability in comparison to the PRI. Our results also imply that spatially coarse remote sensing observations are potentially unrepresentative of the full scope of natural variation that occurs within a boreal forest.
  • Qian, Hui; Dong, Ai-Mei; Roitto, Marja; Xiang, Di-Ying; Zhang, Gang; Repo, Tapani; Wang, Ai-Fang (2021)
    Background and Objectives: More frequent and severe droughts are occurring due to climate change in northern China. In addition to intensity and duration, the timing of droughts may be decisive for its impacts on tree growth, mortality, and the whole forest ecosystem. The aim of this study was to compare the effect of drought occurring in the early- and mid-growing season on the growth and physiology of Mongolian pine (Pinus sylvestris var. mongolica Litv.) saplings. Materials and Methods: Four-year-old container saplings that were about to sprout were exposed to three treatments: (i) regular irrigation throughout the growing season (CTRL), (ii) no irrigation in the early growing season (weeks 1-5) followed by regular irrigation (EGD), (iii) no irrigation in the mid growing season (weeks 5-10), and regular irrigation in the early and late growing season (MGD). We measured the root and shoot growth, sapling mortality, and the physiological changes in the roots and needles periodically. Results: Drought in the mid growing season was more harmful than in the early growing season in terms of chlorophyll fluorescence, electrolyte leakage of needles, needle length, stem diameter increment, and sapling mortality. The high mortality in the mid growing season might be attributed to the joint effect of drought and high temperature. Drought in the early growing season decreased root growth, and the starch and soluble sugars in roots as much as the drought in the mid growing season. Abscisic acid concentration increased in fine roots, but decreased in old needles after drought. Conclusions: Special attention should be paid on forest sites susceptible to drought during afforestation in the face of ongoing climate change.
  • Scheinin, Matias; Asmala, Eero (2020)
    Productivity and trophic status of aquatic systems is traditionally quantified by chlorophyll a measurements. Environmental conditions and ecological interactions cause variability in chlorophyll a abundance. In coastal ecosystems, shallow and complex bathymetry reduces vertical heterogeneity, but promotes horizontal heterogeneity. However, coastal monitoring programs and scientific surveys are primarily focused on the vertical dimension. Here we demonstrate the spatial patchiness of chlorophyll a in coastal waters. We collected horizontally detailed and extensive in situ chlorophyll a data from the coastal Baltic Sea (SW Finland), covering the ice-free season of an annual cycle. Altogether, more than 200,000 observations were logged by an automated underway measurement system equipped with an optical sensor connected to a flow-through system. We analyzed the spatial heterogeneity of calibrated chlorophyll a data by using multiple statistical approaches, and quantified the chlorophyll a patches using a rolling average filter. We were able to identify patches and quantify their abundance and size for each of the 11 sampling campaigns. On average, 285 patches, ranging from 0.6 to 3142 m in size, were observed on the 830 km sampling transect. The average size of the patches was 237 (95% CI 226-248) m, most patches being between 10 and 1000 m. Our results show that patches of chlorophyll a can be effectively identified and quantified by modern in situ optical instrumentation. Such information is both theoretically and practically relevant. First, these results increase our understanding of the overall heterogeneity of the coastal environment. Further, they demonstrate the value of knowing the magnitude and occurrence of chlorophyll a patchiness in accurate detection of changes in coastal ecosystems caused by increased inputs of nutrients.