Browsing by Subject "colitis"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Frei, Remo; Ferstl, Ruth; Roduit, Caroline; Ziegler, Mario; Schiavi, Elisa; Barcik, Weronika; Rodriguez-Perez, Noelia; Wirz, Oliver F.; Wawrzyniak, Marcin; Pugin, Benoit; Nehrbass, Dirk; Jutel, Marek; Smolinska, Sylwia; Konieczna, Patrycja; Bieli, Christian; Loeliger, Susanne; Waser, Marco; Pershagen, Goeran; Riedler, Josef; Depner, Martin; Schaub, Bianca; Genuneit, Jon; Renz, Harald; Pekkanen, Juha; Karvonen, Anne M.; Dalphin, Jean-Charles; van Hage, Marianne; Doekes, Gert; Akdis, Mubeccel; Braun-Fahrlander, Charlotte; Akdis, Cezmi A.; von Mutius, Erika; O'Mahony, Liam; Lauener, Roger P.; Prevention Allergy Risk Factors Se; Protection Against Allergy Study R (2018)
    Background: Childhood exposure to a farm environment has been shown to protect against the development of inflammatory diseases, such as allergy, asthma, and inflammatory bowel disease. Objective: We sought to investigate whether both exposure to microbes and exposure to structures of nonmicrobial origin, such as the sialic acid N-glycolylneuraminic acid (Neu5Gc), might play a significant role. Methods: Exposure to Neu5Gc was evaluated by quantifying anti-Neu5Gc antibody levels in sera of children enrolled in 2 farm studies: the Prevention of Allergy Risk factors for Sensitization in Children Related to Farming and Anthroposophic Lifestyle (PARSIFAL) study (n = 299) and the Protection Against Allergy Study in Rural Environments (PASTURE) birth cohort (cord blood [n = 836], 1 year [n = 734], 4.5 years [n = 700], and 6 years [n = 728]), and we associated them with asthma and wheeze. The effect of Neu5Gc was examined in murine airway inflammation and colitis models, and the role of Neu5Gc in regulating immune activation was assessed based on helper T-cell and regulatory T-cell activation in mice. Results: In children anti-Neu5Gc IgG levels correlated positively with living on a farm and increased peripheral blood forkhead box protein 3 expression and correlated inversely with wheezing and asthma in nonatopic subjects. Exposure to Neu5Gc in mice resulted in reduced airway hyperresponsiveness and inflammatory cell recruitment to the lung. Furthermore, Neu5Gc administration to mice reduced the severity of a colitis model. Mechanistically, we found that Neu5Gc exposure reduced IL-17(+) T-cell numbers and supported differentiation of regulatory T cells. Conclusions: In addition to microbial exposure, increased exposure to non microbial-derived Neu5Gc might contribute to the protective effects associated with the farm environment.
  • Qu, Zhi; Wong, Kuan Yau; Moniruzzaman, Md.; Begun, Jakob; Santos, Hélder A.; Hasnain, Sumaira Z.; Kumeria, Tushar; McGuckin, Michael A.; Popat, Amirali (2021)
    Oral glucocorticoids are backbones for the acute management of inflammatory bowel disease (IBD). However, the clinical effectiveness of conventional oral dosage forms of glucocorticoids is hindered by their low delivery efficiency and systemic side effects. To overcome this problem, a smart drug delivery system with high loading capacity and colonic release by coating functionalized mesoporous silica nanoparticles (MSNs) with a pH‐responsive polymer Eudragit S100 is proposed. In vitro dissolution tests show that Eudragit‐coated MSNs can limit the burst release of loaded prednisolone and budesonide in the gastric environment with more than 60% of the drugs released only at colonic pH (i.e., pH ≥ 7). In vivo therapeutic efficacy of budesonide‐loaded nanoparticles is tested in a murine model of dextran sodium sulfate‐induced colitis. An oral budesonide dose of 0.2 mg kg−1 nanoparticles with Eudragit coating improves the disease activity index compared to other groups. Interestingly, both coated and uncoated nanoparticles show pathological improvements demonstrated by similar levels of histological colitis score. However, coated nanoparticles significantly decrease mRNA expression of the cytokines (Il‐1β, Il‐17, and Il‐10) particularly in proximal colon, indicating colonic delivery. Overall, this study demonstrates the effectiveness of a simple method to fabricate targeted nanomedicine for the treatment of IBD.
  • Salmenkari, Hanne; Korpela, Riitta; Vapaatalo, Heikki (2021)
    Inflammatory bowel diseases (IBDs) are chronic disorders of the gastrointestinal tract, which manifest in recurring gastrointestinal inflammation. The current treatment options of IBD are not curative and are lacking in aspects like prevention of fibrosis. New treatment options are needed to fulfil the unmet needs and provide alternatives to drugs with resistances and side effects. Drugs targeting the renin-angiotensin system (RAS), besides being antihypertensive, also possess anti-inflammatory and antifibrotic properties and could offer an inexpensive alternative to control inflammation and fibrosis in the gut. RAS inhibitors have been effective in preventing and alleviating colitis in preclinical studies, but available human data are still sparse. This review outlines the pathophysiological functions of RAS in the gut and summarizes preclinical studies utilizing pharmacological RAS inhibitors in the treatment of experimental colitis. We discuss the alterations in intestinal RAS and the available evidence of the benefits of RAS inhibitors for IBD patients. Retrospective studies comparing IBD patients using ACE inhibitors or angiotensin II receptor blockers have provided optimistic results regarding a milder disease course and fewer hospitalizations and corticosteroid use in patients using RAS inhibitors. Prospective studies are needed to evaluate the effectiveness of these promising medications in the treatment of IBD.