Browsing by Subject "colour polymorphism"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Kikuchi, David W.; Waldron, Samuel J.; Valkonen, Janne K.; Dobler, Susanne; Mappes, Johanna (2020)
    Mullerian mimicry is a classic example of adaptation, yet Muller's original theory does not account for the diversity often observed in mimicry rings. Here, we aimed to assess how well classical Mullerian mimicry can account for the colour polymorphism found in chemically defended Oreina leaf beetles by using field data and laboratory assays of predator behaviour. We also evaluated the hypothesis that thermoregulation can explain diversity between Oreina mimicry rings. We found that frequencies of each colour morph were positively correlated among species, a critical prediction of Mullerian mimicry. Predators learned to associate colour with chemical defences. Learned avoidance of the green morph of one species protected green morphs of another species. Avoidance of blue morphs was completely generalized to green morphs, but surprisingly, avoidance of green morphs was less generalized to blue morphs. This asymmetrical generalization should favour green morphs: indeed, green morphs persist in blue communities, whereas blue morphs are entirely excluded from green communities. We did not find a correlation between elevation and coloration, rejecting thermoregulation as an explanation for diversity between mimicry rings. Biased predation could explain within-community diversity in warning coloration, providing a solution to a long-standing puzzle. We propose testable hypotheses for why asymmetric generalization occurs, and how predators maintain the predominance of blue morphs in a community, despite asymmetric generalization.
  • Rönkä, Katja; Valkonen, Janne K.; Nokelainen, Ossi; Rojas, Bibiana; Gordon, Swanne; Burdfield-Steel, Emily; Mappes, Johanna (2020)
    Warning signals are predicted to develop signal monomorphism via positive frequency-dependent selection (+FDS) albeit many aposematic systems exhibit signal polymorphism. To understand this mismatch, we conducted a large-scale predation experiment in four countries, among which the frequencies of hindwing warning coloration of the aposematic moth,Arctia plantaginis,differ. Here we show that selection by avian predators on warning colour is predicted by local morph frequency and predator community composition. We found +FDS to be the strongest in monomorphic Scotland and lowest in polymorphic Finland, where the attack risk of moth morphs depended on the local avian community. +FDS was also found where the predator community was the least diverse (Georgia), whereas in the most diverse avian community (Estonia), hardly any models were attacked. Our results support the idea that spatial variation in predator communities alters the strength or direction of selection on warning signals, thus facilitating a geographic mosaic of selection.