Browsing by Subject "cosmological phase transitions"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Tranberg, Anders; Tähtinen, Sara; Weir, David J. (2018)
    We compute the gravitational wave spectrum from a tachyonic preheating transition of a Standard Model-like SU(2)-Higgs system. Tachyonic preheating involves exponentially growing IR modes, at scales as large as the horizon. Such a transition at the electroweak scale could be detectable by LISA, if these non-perturbatively large modes translate into non-linear dynamics sourcing gravitational waves. Through large-scale numerical simulations, we find that the spectrum of gravitational waves does not exhibit such IR features. Instead, we find two peaks corresponding to the Higgs and gauge field mass, respectively. We find that the gravitational wave production is reduced when adding non-Abelian gauge fields to a scalar-only theory, but increases when adding Abelian gauge fields. In particular, gauge fields suppress the gravitational wave spectrum in the IR. A tachyonic transition in the early Universe will therefore not be detectable by LISA, even if it involves non-Abelian gauge fields.
  • Byrnes, Christian T.; Hindmarsh, Mark; Young, Sam; Hawkins, Michael R. S. (2018)
    Making use of definitive new lattice computations of the Standard Model thermodynamics during the quantum chromodynamic (QCD) phase transition, we calculate the enhancement in the mass distribution of primordial black holes (PBHs) due to the softening of the equation of state. We find that the enhancement peaks at approximately 0.7 M-circle dot, with the formation rate increasing by at least two orders of magnitude due to the softening of the equation of state at this time, with a range of approximately 0.3 M-circle dot <M <1.4 M-circle dot at full width half-maximum. PBH formation is increased by a smaller amount for PBHs with masses spanning a large range, 10(-3) M-circle dot <M-PBH <10(3) M-circle dot, which includes the masses of the BHs that LIGO detected. The most significant source of uncertainty in the number of PBHs formed is now due to unknowns in the formation process, rather than from the phase transition. A near scale-invariant density power spectrum tuned to generate a population with mass and merger rate consistent with that detected by LIGO should also produce a much larger energy density of PBHs with solar mass. The existence of BHs below the Chandresekhar mass limit would be a smoking gun for a primordial origin and they could arguably constitute a significant fraction of the cold dark matter density. They also pose a challenge to infiationary model building which seek to produce the LIGO BHs without overproducing lighter PBHs.