Browsing by Subject "cs.LO"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Hannula, Miika; Kontinen, Juha (Springer Science+Business Media, 2014)
    Lecture Notes in Computer Science
    We present a complete finite axiomatization of the unrestricted implication problem for inclusion and conditional independence atoms in the context of dependence logic. For databases, our result implies a finite axiomatization of the unrestricted implication problem for inclusion, functional, and embedded multivalued dependencies in the unirelational case.
  • Hannula, Miika; Kontinen, Juha; Virtema, Jonni; Vollmer, Heribert (2018)
    We classify the computational complexity of the satisfiability, validity, and model-checking problems for propositional independence, inclusion, and team logic. Our main result shows that the satisfiability and validity problems for propositional team logic are complete for alternating exponential-time with polynomially many alternations.
  • Haak, Anselm; Kontinen, Juha; Müller, Fabian; Vollmer, Heribert; Yang, Fan (2019)
    Leibniz International Proceedings in Informatics (LIPIcs)
    We study descriptive complexity of counting complexity classes in the range from $\#$P to $\#\cdot$NP. A corollary of Fagin's characterization of NP by existential second-order logic is that $\#$P can be logically described as the class of functions counting satisfying assignments to free relation variables in first-order formulae. In this paper we extend this study to classes beyond $\#$P and extensions of first-order logic with team semantics. These team-based logics are closely related to existential second-order logic and its fragments, hence our results also shed light on the complexity of counting for extensions of FO in Tarski's semantics. Our results show that the class $\#\cdot$NP can be logically characterized by independence logic and existential second-order logic, whereas dependence logic and inclusion logic give rise to subclasses of $\#\cdot$NP and $\#$P , respectively. Our main technical result shows that the problem of counting satisfying assignments for monotone Boolean $\Sigma_1$-formulae is $\#\cdot$NP-complete as well as complete for the function class generated by dependence logic.
  • Hannula, Miika; Kontinen, Juha; Bussche, Jan Van den; Virtema, Jonni (IEEE Computer Society, 2020)
    We introduce a novel variant of BSS machines called Separate Branching BSS machines (S-BSS in short) and develop a Fagin-type logical characterisation for languages decidable in non-deterministic polynomial time by S-BSS machines. We show that NP on S-BSS machines is strictly included in NP on BSS machines and that every NP language on S-BSS machines is a countable union of closed sets in the usual topology of R^n. Moreover, we establish that on Boolean inputs NP on S-BSS machines without real constants characterises a natural fragment of the complexity class existsR (a class of problems polynomial time reducible to the true existential theory of the reals) and hence lies between NP and PSPACE. Finally we apply our results to determine the data complexity of probabilistic independence logic.
  • Hannula, Miika; Kontinen, Juha; Virtema, Jonni (Springer, 2018)
    Lecture Notes in Computer Science
    Team semantics is the mathematical framework of modern logics of dependence and independence in which formulae are interpreted by sets of assignments (teams) instead of single assignments as in first-order logic. In order to deepen the fruitful interplay between team semantics and database dependency theory, we define "Polyteam Semantics" in which formulae are evaluated over a family of teams. We begin by defining a novel polyteam variant of dependence atoms and give a finite axiomatisation for the associated implication problem. We also characterise the expressive power of poly-dependence logic by properties of polyteams that are downward closed and definable in existential second-order logic (ESO). The analogous result is shown to hold for poly-independence logic and all ESO-definable properties.
  • Hella, Lauri; Väänänen, Jouko (de Gruyter, 2015)
    Ontos Mathematical Logic
    We introduce a refinement of the usual Ehrenfeucht-Fra\"{\i}ss\'e game. The new game will help us make finer distinctions than the traditional one. In particular, it can be used to measure the size formulas needed for expressing a given property. We will give two versions of the game: the first version characterizes the size of formulas in propositional logic, and the second version works for first-order predicate logic.