Browsing by Subject "cyanotoxins"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Shishido, Tania Keiko; Popin, Rafael Vicentini; Jokela, Jouni; Wahlsten, Matti; Fiore, Marli Fatima; Fewer, David P.; Herfindal, Lars; Sivonen, Kaarina (2020)
    Cyanobacteria are photosynthetic organisms that produce a large diversity of natural products with interesting bioactivities for biotechnological and pharmaceutical applications. Cyanobacterial extracts exhibit toxicity towards other microorganisms and cancer cells and, therefore, represent a source of potentially novel natural products for drug discovery. We tested 62 cyanobacterial strains isolated from various Brazilian biomes for antileukemic and antimicrobial activities. Extracts from 39 strains induced selective apoptosis in acute myeloid leukemia (AML) cancer cell lines. Five of these extracts also exhibited antifungal and antibacterial activities. Chemical and dereplication analyses revealed the production of nine known natural products. Natural products possibly responsible for the observed bioactivities and five unknown, chemically related chlorinated compounds present only in Brazilian cyanobacteria were illustrated in a molecular network. Our results provide new information on the vast biosynthetic potential of cyanobacteria isolated from Brazilian environments.
  • Popin, Rafael Vicentini; Delbaje, Endrews; de Abreu, Vinicius Augusto Carvalho; Rigonato, Janaina; Dorr, Felipe Augusto; Pinto, Ernani; Sivonen, Kaarina; Fiore, Marli Fatima (2020)
    The bloom-forming cyanobacterium Nodularia spumigena CENA596 encodes the biosynthetic gene clusters (BGCs) of the known natural products nodularins, spumigins, anabaenopeptins/namalides, aeruginosins, mycosporin-like amino acids, and scytonemin, along with the terpenoid geosmin. Targeted metabolomics confirmed the production of these metabolic compounds, except for the alkaloid scytonemin. Genome mining of N. spumigena CENA596 and its three closely related Nodularia strains-two planktonic strains from the Baltic Sea and one benthic strain from Japanese marine sediment-revealed that the number of BGCs in planktonic strains was higher than in benthic one. Geosmin-a volatile compound with unpleasant taste and odor-was unique to the Brazilian strain CENA596. Automatic annotation of the genomes using subsystems technology revealed a related number of coding sequences and functional roles. Orthologs from the Nodularia genomes are involved in the primary and secondary metabolisms. Phylogenomic analysis of N. spumigena CENA596 based on 120 conserved protein sequences positioned this strain close to the Baltic Nodularia. Phylogeny of the 16S rRNA genes separated the Brazilian CENA596 strain from those of the Baltic Sea, despite their high sequence identities (99% identity, 100% coverage). The comparative analysis among planktic Nodularia strains showed that their genomes were considerably similar despite their geographically distant origin.
  • Tokodi, Nada; Backovic, Damjana Drobac; Luji, Jelena; Šcekic, Ilija; Simic, Snežana; Đorđevic, Nevena; Dulic, Tamara; Miljanovic, Branko; Kitanovic, Nevena; Marinovic, Zoran; Savela, Henna; Meriluoto, Jussi; Svircev, Zorica (MDPI, 2020)
    Water 12 1 (2020)
    For 50 years persistent cyanobacterial blooms have been observed in Lake Ludoš (Serbia), a wetland area of international significance listed as a Ramsar site. Cyanobacteria and cyanotoxins can affect many organisms, including valuable flora and fauna, such as rare and endangered bird species living or visiting the lake. The aim was to carry out monitoring, estimate the current status of the lake, and discuss potential resolutions. Results obtained showed: (a) the poor chemical state of the lake; (b) the presence of potentially toxic (genera Dolichospermum, Microcystis, Planktothrix, Chroococcus, Oscillatoria, Woronichinia and dominant species Limnothrix redekei and Pseudanabaena limnetica) and invasive cyanobacterial species Raphidiopsis raciborskii; (c) the detection of microcystin (MC) and saxitoxin (STX) coding genes in biomass samples; (d) the detection of several microcystin variants (MC-LR, MC-dmLR, MC-RR, MC-dmRR, MC-LF) in water samples; (e) histopathological alterations in fish liver, kidney and gills. The potential health risk to all organisms in the ecosystem and the ecosystem itself is thus still real and present. Although there is still no resolution in sight, urgent remediation measures are needed to alleviate the incessant cyanobacterial problem in Lake Ludoš to break this ecosystem out of the perpetual state of limbo in which it has been trapped for quite some time.
  • Omidi, Azam; Pflugmacher, Stephan; Kaplan, Aaron; Kim, Young Jun; Esterhuizen, Maranda (2021)
    The escalating occurrence of toxic cyanobacterial blooms worldwide is a matter of concern. Global warming and eutrophication play a major role in the regularity of cyanobacterial blooms, which has noticeably shifted towards the predomination of toxic populations. Therefore, understanding the effects of cyanobacterial toxins in aquatic ecosystems and their advantages to the producers are of growing interest. In this paper, the current literature is critically reviewed to provide further insights into the ecological contribution of cyanotoxins in the variation of the lake community diversity and structure through interspecies interplay. The most commonly detected and studied cyanobacterial toxins, namely the microcystins, anatoxins, saxitoxins, cylindrospermopsins and β-N-methylamino-L-alanine, and their ecotoxicity on various trophic levels are discussed. This work addresses the environmental characterization of pure toxins, toxin-containing crude extracts and filtrates of single and mixed cultures in interspecies interactions by inducing different physiological and metabolic responses. More data on these interactions under natural conditions and laboratory-based studies using direct co-cultivation approaches will provide more substantial information on the consequences of cyanotoxins in the natural ecosystem. This review is beneficial for understanding cyanotoxin-mediated interspecies interactions, developing bloom mitigation technologies and robustly assessing the hazards posed by toxin-producing cyanobacteria to humans and other organisms.