Browsing by Subject "cytology"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Balic, A. (Humana press, 2019)
    Methods in Molecular Biology
    Continuous growth of the rodent incisor is enabled by epithelial and mesenchymal stem cells (ESCs and MSCs) which unceasingly replenish enamel and dentin, respectively, that wear by persistent animal gnawing. Lineage tracing studies have provided evidence that ESCs contribute to all epithelial lineages of the tooth in vivo. Meanwhile, in the mouse incisor, MSCs continuously contribute to odontoblast lineage and tooth growth. However, in vitro manipulation of ESCs has shown little progress, mainly due to lack of appropriate protocol to successfully isolate, culture, expand, and differentiate ESCs in vitro without using the co-culture system. In this chapter we describe the isolation of the Sox2-GFP+ cell population that is highly enriched in ESCs. Isolated cells can be used for various types of analyses, including in vitro culture, single cell-related analyses, etc. Furthermore, we describe ways to obtain populations enriched in the incisor MSCs using FACS sorting of antibody-labeled cells. Easily accessible FACS sorting enables easy and relatively fast isolation of the cells labeled by the fluorescent protein. © Springer Science+Business Media, LLC, part of Springer Nature 2019.
  • Aro, Katri; Korpi, Jarkko; Tarkkanen, Jussi; Mäkitie, Antti; Atula, Timo (2020)
    Background: The nature of parotid tumors often remains unknown preoperatively and final histopathology may reveal unexpected malignancy. Still, the use of fine-needle aspiration cytology (FNAC) and imaging varies in the management of these tumors. Methods: We evaluated the preoperative examinations and management of all 195 parotid gland tumors diagnosed within our catchment area of 1.6 million people during 2015. Results: Altogether 171 (88%) tumors were classified as true salivary gland neoplasms. FNAC showed no false malignant findings, but it was false benign in 5 (2.6%) cases. Preoperative MRI was utilized in 48 patients (25%). Twenty (10%) malignancies included 16 salivary gland carcinomas. Pleomorphic adenomas accounted for 52% of all adenomas. For 24 (40%) Warthin tumors, surgery was omitted. Conclusion: The proportion of malignancies was lower than generally presented. Our proposed guidelines include ultrasound-guided FNAC with certain limitations. MRI is warranted in selected cases, but seems unnecessary routinely.
  • Al-Rashed, F.; Ahmad, Z.; Iskandar, M.A.; Tuomilehto, J.; Al-Mulla, F.; Ahmad, R. (2019)
    Background/Aims: TNF-α-mediated pro-inflammatory phenotypic change in monocytes is known to be implicated in the pathogenesis of metabolic inflammation and insulin resistance. However, the mechanism by which TNF-α-induces inflammatory phenotypic shift in monocytes is poorly understood. Since long-chain acyl-CoA synthetase 1 (ACSL1) is associated with inflammatory monocytes/macrophages, we investigated the role of ACSL1 in the TNF-α-driven inflammatory phenotypic shift in the monocytes. Methods: Monocytes (Human monocytic THP-1 cells) were stimulated with TNF-α. Inflammatory phenotypic markers (CD16, CD11b, CD11c and HLA-DR) expression was determined with real time RT-PCR and flow cytometry. IL-1β and MCP-1 were determined by ELISA. Signaling pathways were identified by using ACSL1 inhibitor, ACSL1 siRNA and NF-κB reporter monocytic cells. Phosphorylation of NF-κB was analyzed by western blotting and flow cytometry. Results: Our data show that TNF-α induced significant increase in the expression of CD16, CD11b, CD11c and HLA-DR. Inhibition of ACSL1 activity in the cells with triacsin C significantly suppressed the expression of these inflammatory markers. Using ACSL-1 siRNA, we further demonstrate that TNF-α-induced inflammatory markers expression in monocytic cells requires ACSL1. In addition, IL-1b and MCP-1 production by TNF-α activated monocytic cells was significantly blocked by the inhibition of ACSL-1 activity. Interestingly, elevated NF-κB activity resulting from TNF-α stimulation was attenuated in ACSL1 deficient cells. Conclusion: Our findings provide an evidence that TNF-α-associated inflammatory polarization in monocytes is an ACSL1 dependent process, which indicates its central role in TNF-α-driven metabolic inflammation. © 2019 The Author(s).