Browsing by Subject "data resources"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Ravikumar, Balaguru; Aittokallio, Tero (2018)
    Introduction: Polypharmacology has emerged as an essential paradigm for modern drug discovery process. Multiple lines of evidence suggest that agents capable of modulating multiple targets in a selective manner may offer also improved balance between therapeutic efficacy and safety compared to single-targeted agents. Areas covered: Herein, the authors review the recent progress made in experimental and computational strategies for addressing the critical challenges with rational discovery of selective multi-targeted agents within the context of polypharmacological modelling. Specific focus is placed on multi-targeted mono-therapies, although examples of combinatorial polytherapies are also covered as an important part of the polypharmacology paradigm. The authors focus mainly on anti-cancer treatment applications, where polypharmacology is playing a key role in determining the efficacy-toxicity trade-off of multi-targeting strategies. Expert opinion: Even though it is widely appreciated that complex polypharmacological interactions can contribute both to therapeutic and adverse side-effects, systematic approaches for improving this balance by means of integrated experimental-computational strategies are still lacking. Future developments will be needed for comprehensive collection and harmonization of systems-wide target selectivity data, enabling better utilization and control for multi-targeted activities in the drug development process. Additional areas of future developments include model-based strategies for drug combination screening and improved pre-clinical validation options with animal models.
  • Cazaly, Emma; Saad, Joseph; Wang, Wenyu; Heckman, Caroline; Ollikainen, Miina; Tang, Jing (2019)
    Epigenetic research involves examining the mitotically heritable processes that regulate gene expression, independent of changes in the DNA sequence. Recent technical advances such as whole-genome bisulfite sequencing and affordable epigenomic array-based technologies, allow researchers to measure epigenetic profiles of large cohorts at a genome-wide level, generating comprehensive high-dimensional datasets that may contain important information for disease development and treatment opportunities. The epigenomic profile for a certain disease is often a result of the complex interplay between multiple genetic and environmental factors, which poses an enormous challenge to visualize and interpret these data. Furthermore, due to the dynamic nature of the epigenome, it is critical to determine causal relationships from the many correlated associations. In this review we provide an overview of recent data analysis approaches to integrate various omics layers to understand epigenetic mechanisms of complex diseases, such as obesity and cancer. We discuss the following topics: (i) advantages and limitations of major epigenetic profiling techniques, (ii) resources for standardization, annotation and harmonization of epigenetic data, and (iii) statistical methods and machine learning methods for establishing data-driven hypotheses of key regulatory mechanisms. Finally, we discuss the future directions for data integration that shall facilitate the discovery of epigenetic-based biomarkers and therapies.